123 research outputs found
HFE gene mutations increase the risk of coronary heart disease in women
The purpose of the present study is to examine HFE gene mutations in relation to newly diagnosed (incident) coronary heart disease (CHD). In a population-based follow-up study of 7,983 individuals aged 55 years and older, we compared the risk of incident CHD between HFE carriers and non-carriers, overall and stratified by sex and smoking status. HFE mutations were significantly associated with an increased risk of incident CHD in women but not in men (hazard ratio [HR] for women = 1.7, 95% confidence interval [CI] 1.2–2.4 versus HR for men = 0.9, 95% CI 0.7–1.2). This increased CHD risk associated with HFE mutations in women was statistically significant in never smokers (HR = 1.8, 95% CI 1.1–2.8) and current smokers (HR = 3.1, 95% CI 1.4–7.1), but not in former smokers (HR = 1.3, 95% CI 0.7–2.4). HFE mutations are associated with increased risk of incident CHD in women
Circulating leukocyte telomere length is highly heritable among families of Arab descent
Background
Telomere length, an indicator of ageing and longevity, has been correlated with several biomarkers of cardiometabolic disease in both Arab children and adults. It is not known, however, whether or not telomere length is a highly conserved inheritable trait in this homogeneous cohort, where age-related diseases are highly prevalent. As such, the aim of this study was to address the inheritability of telomere length in Saudi families and the impact of cardiometabolic disease biomarkers on telomere length.
Methods
A total of 119 randomly selected Saudi families (123 adults and 131 children) were included in this cross-sectional study. Anthropometrics were obtained and fasting blood samples were taken for routine analyses of fasting glucose and lipid profile. Leukocyte telomere length was determined using quantitative real time PCR.
Results
Telomere length was highly heritable as assessed by a parent-offspring regression [h2 = 0.64 (p = 0.0006)]. Telomere length was modestly associated with BMI (R2 0.07; p-value 0.0087), total cholesterol (R2 0.08; p-value 0.0033), and LDL-cholesterol (R2 0.15; p-value 3 x 10-5) after adjustments for gender, age and age within generation.
Conclusion
The high heritability of telomere length in Arab families, and the associations of telomere length with various cardiometabolic parameters suggest heritable genetic fetal and/or epigenetic influences on the early predisposition of Arab children to age-related diseases and accelerated ageing
Longer telomere length in peripheral white blood cells is associated with risk of lung cancer and the rs2736100 (CLPTM1L-TERT) polymorphism in a prospective cohort study among women in China.
A recent genome-wide association study of lung cancer among never-smoking females in Asia demonstrated that the rs2736100 polymorphism in the TERT-CLPTM1L locus on chromosome 5p15.33 was strongly and significantly associated with risk of adenocarcinoma of the lung. The telomerase gene TERT is a reverse transcriptase that is critical for telomere replication and stabilization by controlling telomere length. We previously found that longer telomere length measured in peripheral white blood cell DNA was associated with increased risk of lung cancer in a prospective cohort study of smoking males in Finland. To follow up on this finding, we carried out a nested case-control study of 215 female lung cancer cases and 215 female controls, 94% of whom were never-smokers, in the prospective Shanghai Women's Health Study cohort. There was a dose-response relationship between tertiles of telomere length and risk of lung cancer (odds ratio (OR), 95% confidence interval [CI]: 1.0, 1.4 [0.8-2.5], and 2.2 [1.2-4.0], respectively; P trend = 0.003). Further, the association was unchanged by the length of time from blood collection to case diagnosis. In addition, the rs2736100 G allele, which we previously have shown to be associated with risk of lung cancer in this cohort, was significantly associated with longer telomere length in these same study subjects (P trend = 0.030). Our findings suggest that individuals with longer telomere length in peripheral white blood cells may have an increased risk of lung cancer, but require replication in additional prospective cohorts and populations
Chronic psychosocial and financial burden accelerates 5-year telomere shortening: findings from the Coronary Artery Risk Development in Young Adults Study.
Leukocyte telomere length, a marker of immune system function, is sensitive to exposures such as psychosocial stressors and health-maintaining behaviors. Past research has determined that stress experienced in adulthood is associated with shorter telomere length, but is limited to mostly cross-sectional reports. We test whether repeated reports of chronic psychosocial and financial burden is associated with telomere length change over a 5-year period (years 15 and 20) from 969 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a longitudinal, population-based cohort, ages 18-30 at time of recruitment in 1985. We further examine whether multisystem resiliency, comprised of social connections, health-maintaining behaviors, and psychological resources, mitigates the effects of repeated burden on telomere attrition over 5 years. Our results indicate that adults with high chronic burden do not show decreased telomere length over the 5-year period. However, these effects do vary by level of resiliency, as regression results revealed a significant interaction between chronic burden and multisystem resiliency. For individuals with high repeated chronic burden and low multisystem resiliency (1 SD below the mean), there was a significant 5-year shortening in telomere length, whereas no significant relationships between chronic burden and attrition were evident for those at moderate and higher levels of resiliency. These effects apply similarly across the three components of resiliency. Results imply that interventions should focus on establishing strong social connections, psychological resources, and health-maintaining behaviors when attempting to ameliorate stress-related decline in telomere length among at-risk individuals
Inheritance of Telomere Length in a Bird
Telomere dynamics are intensively studied in human ageing research and epidemiology, with many correlations reported between telomere length and age-related diseases, cancer and death. While telomere length is influenced by environmental factors there is also good evidence for a strong heritable component. In human, the mode of telomere length inheritance appears to be paternal and telomere length differs between sexes, with females having longer telomeres than males. Genetic factors, e.g. sex chromosomal inactivation, and non-genetic factors, e.g. antioxidant properties of oestrogen, have been suggested as possible explanations for these sex-specific telomere inheritance and telomere length differences. To test the influence of sex chromosomes on telomere length, we investigated inheritance and sex-specificity of telomere length in a bird species, the kakapo (Strigops habroptilus), in which females are the heterogametic sex (ZW) and males are the homogametic (ZZ) sex. We found that, contrary to findings in humans, telomere length was maternally inherited and also longer in males. These results argue against an effect of sex hormones on telomere length and suggest that factors associated with heterogamy may play a role in telomere inheritance and sex-specific differences in telomere length
Genomic Instability Is Associated with Natural Life Span Variation in Saccharomyces cerevisiae
Increasing genomic instability is associated with aging in eukaryotes, but the connection between genomic instability and natural variation in life span is unknown. We have quantified chronological life span and loss-of-heterozygosity (LOH) in 11 natural isolates of Saccharomyces cerevisiae. We show that genomic instability increases and mitotic asymmetry breaks down during chronological aging. The age-dependent increase of genomic instability generally lags behind the drop of viability and this delay accounts for ∼50% of the observed natural variation of replicative life span in these yeast isolates. We conclude that the abilities of yeast strains to tolerate genomic instability co-vary with their replicative life spans. To the best of our knowledge, this is the first quantitative evidence that demonstrates a link between genomic instability and natural variation in life span
Telomere Lengths, Pulmonary Fibrosis and Telomerase (TERT) Mutations
mutations. mutation carriers demonstrate reduced life expectancy, with a mean age of death of 58 and 67 years for males and females, respectively. mutation have shorter telomere lengths than controls, demonstrating epigenetic inheritance of a shortened parental telomere length set-point
Telomere Length as a Biomarker for Adiposity Changes after a Multidisciplinary Intervention in Overweight/Obese Adolescents: The EVASYON Study
[Context]
Telomeres are biomarkers of biological aging. Shorter telomeres have been associated with increased adiposity in adults. However, this relationship remains unclear in children and adolescents.
[Objective]
To evaluate the association between telomere length (TL) and adiposity markers in overweight/obese adolescents after an intensive program. We hypothesize that greater TL at baseline would predict a better response to a weight loss treatment.
Design, Setting, Patients and Intervention
The EVASYON is a multidisciplinary treatment program for adolescents with overweight and obesity that is aimed at applying the intervention to all possibly involved areas of the individual, such as dietary habits, physical activity and cognitive and psychological profiles. Seventy-four participants (36 males, 38 females, 12–16 yr) were enrolled in the intervention program: 2 months of an energy-restricted diet and a follow-up period (6 months).
[Main Outcome]
TL was measured by quantitative real-time polymerase chain reaction at baseline and after 2 months; meanwhile, anthropometric variables were also assessed after 6 months of follow-up.
[Results]
TL lengthened in participants during the intensive period (+1.9±1.0, p<0.001) being greater in overweight/obese adolescents with the shortest telomeres at baseline (r = −0.962, p<0.001). Multivariable linear regression analysis showed that higher baseline TL significantly predicted a higher decrease in body weight (B = −1.53, p = 0.005; B = −2.25, p = 0.047) and in standard deviation score for body mass index (BMI-SDS) (B = −0.22, p = 0.010; B = −0.47, p = 0.005) after the intensive and extensive period treatment respectively, in boys.
[Conclusion]
Our study shows that a weight loss intervention is accompanied by a significant increase in TL in overweight/obese adolescents. Moreover, we suggest that initial longer TL could be a potential predictor for a better weight loss response.Research relating to this work was funded by grants from the Health Research Fund from the Carlos III Health Institute from Ministry of Health and Consumption, Fondo de Investigación Sanitaria (FIS; PI051579, PI051080) for the EVASYON project; Línea Especial, Nutrición y Obesidad (University of Navarra); Spanish Ministry of Science and Innovation (MICINN) [SAF2010-20367]; Carlos III Health Institute [Centro de Investigación Biomédica en Red (CIBER) project, CB06/03/1017], and RETICS network. The scholarship to S. García-Calzón from the FPU ‘Formación de Profesorado Universitario’ from the Spanish Ministry is fully acknowledged
- …