40 research outputs found
The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76
The {\sc Majorana} collaboration is searching for neutrinoless double beta
decay using Ge, which has been shown to have a number of advantages in
terms of sensitivities and backgrounds. The observation of neutrinoless
double-beta decay would show that lepton number is violated and that neutrinos
are Majorana particles and would simultaneously provide information on neutrino
mass. Attaining sensitivities for neutrino masses in the inverted hierarchy
region, meV, will require large, tonne-scale detectors with extremely
low backgrounds, at the level of 1 count/t-y or lower in the region of
the signal. The {\sc Majorana} collaboration, with funding support from DOE
Office of Nuclear Physics and NSF Particle Astrophysics, is constructing the
{\sc Demonstrator}, an array consisting of 40 kg of p-type point-contact
high-purity germanium (HPGe) detectors, of which 30 kg will be enriched
to 87% in Ge. The {\sc Demonstrator} is being constructed in a clean
room laboratory facility at the 4850' level (4300 m.w.e.) of the Sanford
Underground Research Facility (SURF) in Lead, SD. It utilizes a compact graded
shield approach with the inner portion consisting of ultra-clean Cu that is
being electroformed and machined underground. The primary aim of the {\sc
Demonstrator} is to show the feasibility of a future tonne-scale measurement in
terms of backgrounds and scalability.Comment: Proceedings for the MEDEX 2013 Conferenc
Sensitivity Studies for Third-Generation Gravitational Wave Observatories
Advanced gravitational wave detectors, currently under construction, are
expected to directly observe gravitational wave signals of astrophysical
origin. The Einstein Telescope, a third-generation gravitational wave detector,
has been proposed in order to fully open up the emerging field of gravitational
wave astronomy. In this article we describe sensitivity models for the Einstein
Telescope and investigate potential limits imposed by fundamental noise
sources. A special focus is set on evaluating the frequency band below 10Hz
where a complex mixture of seismic, gravity gradient, suspension thermal and
radiation pressure noise dominates. We develop the most accurate sensitivity
model, referred to as ET-D, for a third-generation detector so far, including
the most relevant fundamental noise contributions.Comment: 13 pages, 7 picture
Scientific Potential of Einstein Telescope
Einstein gravitational-wave Telescope (ET) is a design study funded by the
European Commission to explore the technological challenges of and scientific
benefits from building a third generation gravitational wave detector. The
three-year study, which concluded earlier this year, has formulated the
conceptual design of an observatory that can support the implementation of new
technology for the next two to three decades. The goal of this talk is to
introduce the audience to the overall aims and objectives of the project and to
enumerate ET's potential to influence our understanding of fundamental physics,
astrophysics and cosmology.Comment: Conforms to conference proceedings, several author names correcte
The third generation of gravitational wave observatories and their science reach
Large gravitational wave interferometric detectors, like Virgo and LIGO, demonstrated the capability to reach their design sensitivity, but to transform these machines into an effective observational instrument for gravitational wave astronomy a large improvement in sensitivity is required. Advanced detectors in the near future and third-generation observatories in more than one decade will open the possibility to perform gravitational wave astronomical observations from the Earth. An overview of the possible science reaches and the technological progress needed to realize a third-generation observatory are discussed in this paper. The status of the project Einstein Telescope (ET), a design study of a third-generation gravitational wave observatory, will be reported