38 research outputs found

    Increased Level of Pericardial Insulin-Like Growth Factor-1 in Patients With Left Ventricular Dysfunction and Advanced Heart Failure

    Get PDF
    ObjectivesTo test the hypothesis that the cardiac insulin-like growth factor-1 (IGF-1) system is up-regulated in the failing heart, we measured the pericardial (cardiac) and plasma (circulating) IGF-1 levels in coronary artery disease patients.BackgroundLocal IGF-1 systems are regulated differently from the systemic IGF-1 system. The cardiac IGF-1 system is up-regulated by the increased left ventricular (LV) wall stress. However, it remains unknown how this system is affected in LV dysfunction and heart failure.MethodsWe measured the plasma and pericardial fluid levels of IGF-1 and brain natriuretic peptide (BNP) in 87 coronary artery disease patients undergoing cardiac surgery, and examined their relationships with LV function and heart failure severity. The expressions of IGF-1 and IGF-1 receptor proteins were examined in endomyocardial biopsies obtained from other patients with normal or impaired LV function.ResultsThe pericardial IGF-1 and BNP levels were positively correlated with the plasma BNP level (both p < 0.001). The pericardial IGF-1 level was increased in heart failure patients, whereas the plasma IGF-1 level was rather decreased. The pericardial IGF-1 level was inversely correlated with the LV ejection fraction (p < 0.001), whereas the plasma IGF-1 level was not. Positive immunostaining for IGF-1 and IGF-1 receptor proteins was enhanced in myocardial biopsies from failing hearts compared with those from nonfailing hearts.ConclusionsThe pericardial IGF-1 level was increased in patients with LV dysfunction and heart failure, whereas the plasma IGF-1 level was decreased. These results may indicate that up-regulation of the cardiac IGF-1 system serves as a compensatory mechanism for LV dysfunction

    Orchestrated ensemble activities constitute a hippocampal memory engram

    Get PDF
    The brain stores and recalls memories through a set of neurons, termed engram cells. However, it is unclear how these cells are organized to constitute a corresponding memory trace. We established a unique imaging system that combines Ca2+ imaging and engram identification to extract the characteristics of engram activity by visualizing and discriminating between engram and non-engram cells. Here, we show that engram cells detected in the hippocampus display higher repetitive activity than non-engram cells during novel context learning. The total activity pattern of the engram cells during learning is stable across post-learning memory processing. Within a single engram population, we detected several sub-ensembles composed of neurons collectively activated during learning. Some sub-ensembles preferentially reappear during post-learning sleep, and these replayed sub-ensembles are more likely to be reactivated during retrieval. These results indicate that sub-ensembles represent distinct pieces of information, which are then orchestrated to constitute an entire memory

    Green Tea Polyphenol EGCG Sensing Motif on the 67-kDa Laminin Receptor

    Get PDF
    BACKGROUND: We previously identified the 67-kDa laminin receptor (67LR) as the cell-surface receptor conferring the major green tea polyphenol (-)-epigallocatechin-3-O-gallate (EGCG) responsiveness to cancer cells. However, the underlying mechanism for interaction between EGCG and 67LR remains unclear. In this study, we investigated the possible role of EGCG-67LR interaction responsible for its bioactivities. METHODOLOGY/PRINCIPAL FINDINGS: We synthesized various peptides deduced from the extracellular domain corresponding to the 102-295 region of human 67LR encoding a 295-amino acid. The neutralizing activity of these peptides toward EGCG cell-surface binding and inhibition of cancer cell growth were assayed. Both activities were inhibited by a peptide containing the 10-amino acid residues, IPCNNKGAHS, corresponding to residues 161-170. Furthermore, mass spectrometric analysis revealed the formation of a EGCG-LR161-170 peptide complex. A study of the amino acid deletion/replacement of the peptide LR161-170 indicated that the 10-amino acid length and two basic amino acids, K(166) and H(169), have a critical role in neutralizing EGCG's activities. Moreover, neutralizing activity against the anti-proliferation action of EGCG was observed in a recombinant protein of the extracellular domain of 67LR, and this effect was abrogated by a deletion of residues 161-170. These findings support that the 10 amino-acid sequence, IPCNNKGAHS, might be the functional domain responsible for the anti-cancer activity of EGCG. CONCLUSIONS/SIGNIFICANCE: Overall, our results highlight the nature of the EGCG-67LR interaction and provide novel structural insights into the understanding of 67LR-mediated functions of EGCG, and could aid in the development of potential anti-cancer compounds for chemopreventive or therapeutic uses that can mimic EGCG-67LR interactions

    Case Reports of Recently Experienced Adult Retropharyngeal Abscesses

    No full text

    A Case of Retropharyngeal Abscess Secondary to Pyogenic Spondylitis

    No full text

    Two Cases of Retropharyngeal Abscess

    No full text

    Coupling factor 6 の血管内皮細胞におけるケモカイン受容体発現に及ぼす影響

    No full text
    Abstract Objectives: Vascular endothelial cells are exposed to an acidic pH, but its influence on chemokine receptors expressed in the vascular endothelial cells is unclear. We investigated the role of coupling factor 6 (CF6), a novel stimulator of proton importer, in the regulation of chemokine receptors in the vascular endothelial cells. Methods and Results: In microarray analysis, there were the increased expression of CC chemokine receptor 9 (CCR9) and CX3C chemokine receptor 1 (CX3CR1) and the decreased expression of CXC chemokine receptor 4 (CXCR4) in the human umbilical vascular endothelial cells (HUVEC) that were exposed to CF6. The ratio of CXCR4 to GAPDH mRNA was decreased in HUVEC that were exposed to either CF6 at 10-7M or hypoxia to a similar degree. Apoptotic cells, measured by annexin-V propidium iodide kit, were increased in HUVEC that were exposed to CF6 for 24 hours in normoxia. Conclusions: CF6 influences the expression of chemokine receptors and induces apoptosis in the vascular endothelial cells
    corecore