59 research outputs found
Collapse to Black Holes in Brans-Dicke Theory: I. Horizon Boundary Conditions for Dynamical Spacetimes
We present a new numerical code that evolves a spherically symmetric
configuration of collisionless matter in the Brans-Dicke theory of gravitation.
In this theory the spacetime is dynamical even in spherical symmetry, where it
can contain gravitational radiation. Our code is capable of accurately tracking
collapse to a black hole in a dynamical spacetime arbitrarily far into the
future, without encountering either coordinate pathologies or spacetime
singularities. This is accomplished by truncating the spacetime at a spherical
surface inside the apparent horizon, and subsequently solving the evolution and
constraint equations only in the exterior region. We use our code to address a
number of long-standing theoretical questions about collapse to black holes in
Brans-Dicke theory.Comment: 46 pages including figures, uuencoded gz-compressed postscript,
Submitted to Phys Rev
Anisotropic dark energy stars
A model of compact object coupled to inhomogeneous anisotropic dark energy is
studied. It is assumed a variable dark energy that suffers a phase transition
at a critical density. The anisotropic Lambda-Tolman-Oppenheimer-Volkoff
equations are integrated to know the structure of these objects. The anisotropy
is concentrated on a thin shell where the phase transition takes place, while
the rest of the star remains isotropic. The family of solutions obtained
depends on the coupling parameter between the dark energy and the fermion
matter. The solutions share several features in common with the gravastar
model. There is a critical coupling parameter that gives non-singular black
hole solutions. The mass-radius relations are studied as well as the internal
structure of the compact objects. The hydrodynamic stability of the models is
analyzed using a standard test from the mass-radius relation. For each
permissible value of the coupling parameter there is a maximum mass, so the
existence of black holes is unavoidable within this model.Comment: 12 pages, 6 figures, final manuscript, Accepted for publication in
Astrophysics & Space Scienc
Relativistic Hydrodynamic Evolutions with Black Hole Excision
We present a numerical code designed to study astrophysical phenomena
involving dynamical spacetimes containing black holes in the presence of
relativistic hydrodynamic matter. We present evolutions of the collapse of a
fluid star from the onset of collapse to the settling of the resulting black
hole to a final stationary state. In order to evolve stably after the black
hole forms, we excise a region inside the hole before a singularity is
encountered. This excision region is introduced after the appearance of an
apparent horizon, but while a significant amount of matter remains outside the
hole. We test our code by evolving accurately a vacuum Schwarzschild black
hole, a relativistic Bondi accretion flow onto a black hole, Oppenheimer-Snyder
dust collapse, and the collapse of nonrotating and rotating stars. These
systems are tracked reliably for hundreds of M following excision, where M is
the mass of the black hole. We perform these tests both in axisymmetry and in
full 3+1 dimensions. We then apply our code to study the effect of the stellar
spin parameter J/M^2 on the final outcome of gravitational collapse of rapidly
rotating n = 1 polytropes. We find that a black hole forms only if J/M^2<1, in
agreement with previous simulations. When J/M^2>1, the collapsing star forms a
torus which fragments into nonaxisymmetric clumps, capable of generating
appreciable ``splash'' gravitational radiation.Comment: 17 pages, 14 figures, submitted to PR
Dynamics of spherically symmetric spacetimes: hydrodynamics and radiation
Using the 3+1 formalism of general relativity we obtain the equations
governing the dynamics of spherically symmetric spacetimes with arbitrary
sources. We then specialize for the case of perfect fluids accompanied by a
flow of interacting massless or massive particles (e.g. neutrinos) which are
described in terms of relativistic transport theory. We focus in three types of
coordinates: 1) isotropic gauge and maximal slicing, 2) radial gauge and polar
slicing, and 3) isotropic gauge and polar slicing.Comment: submitted to Phys. Rev. D, 46 pages, RevTex file, no figure
Computing gravitational waves from slightly nonspherical stellar collapse to black hole: Odd-parity perturbation
Nonspherical stellar collapse to a black hole is one of the most promising
gravitational wave sources for gravitational wave detectors. We numerically
study gravitational waves from a slightly nonspherical stellar collapse to a
black hole in linearized Einstein theory. We adopt a spherically collapsing
star as the zeroth-order solution and gravitational waves are computed using
perturbation theory on the spherical background. In this paper we focus on the
perturbation of odd-parity modes. Using the polytropic equations of state with
polytropic indices and 3, we qualitatively study gravitational waves
emitted during the collapse of neutron stars and supermassive stars to black
holes from a marginally stable equilibrium configuration. Since the matter
perturbation profiles can be chosen arbitrarily, we provide a few types for
them. For , the gravitational waveforms are mainly characterized by a
black hole quasinormal mode ringing, irrespective of perturbation profiles
given initially. However, for , the waveforms depend strongly on the
initial perturbation profiles. In other words, the gravitational waveforms
strongly depend on the stellar configuration and, in turn, on the ad hoc choice
of the functional form of the perturbation in the case of supermassive stars.Comment: 31 pages, accepted for publication in Phys. Rev. D, typos and minor
errors correcte
Maximally incompressible neutron star matter
Relativistic kinetic theory, based on the Grad method of moments as developed
by Israel and Stewart, is used to model viscous and thermal dissipation in
neutron star matter and determine an upper limit on the maximum mass of neutron
stars. In the context of kinetic theory, the equation of state must satisfy a
set of constraints in order for the equilibrium states of the fluid to be
thermodynamically stable and for perturbations from equilibrium to propagate
causally via hyperbolic equations. Application of these constraints to neutron
star matter restricts the stiffness of the most incompressible equation of
state compatible with causality to be softer than the maximally incompressible
equation of state that results from requiring the adiabatic sound speed to not
exceed the speed of light. Using three equations of state based on experimental
nucleon-nucleon scattering data and properties of light nuclei up to twice
normal nuclear energy density, and the kinetic theory maximally incompressible
equation of state at higher density, an upper limit on the maximum mass of
neutron stars averaging 2.64 solar masses is derived.Comment: 8 pages, 2 figure
New Strong-Field QED Effects at ELI: Nonperturbative Vacuum Pair Production
Since the work of Sauter, and Heisenberg, Euler and K\"ockel, it has been
understood that vacuum polarization effects in quantum electrodynamics (QED)
predict remarkable new phenomena such as light-light scattering and pair
production from vacuum. However, these fundamental effects are difficult to
probe experimentally because they are very weak, and they are difficult to
analyze theoretically because they are highly nonlinear and/or nonperturbative.
The Extreme Light Infrastructure (ELI) project offers the possibility of a new
window into this largely unexplored world. I review these ideas, along with
some new results, explaining why quantum field theorists are so interested in
this rapidly developing field of laser science. I concentrate on the
theoretical tools that have been developed to analyze nonperturbative vacuum
pair production.Comment: 20 pages, 9 figures; Key Lecture at the ELI Workshop and School on
"Fundamental Physics with Ultra-High Fields", 29 Sept - 2 Oct. 2008,
Frauenworth Monastery, Germany; v2: refs updated, English translations of
reviews of Nikishov and Ritu
- …