14 research outputs found

    Barnase as a New Therapeutic Agent Triggering Apoptosis in Human Cancer Cells

    Get PDF
    RNases are currently studied as non-mutagenic alternatives to the harmful DNA-damaging anticancer drugs commonly used in clinical practice. Many mammalian RNases are not potent toxins due to the strong inhibition by ribonuclease inhibitor (RI) presented in the cytoplasm of mammalian cells.In search of new effective anticancer RNases we studied the effects of barnase, a ribonuclease from Bacillus amyloliquefaciens, on human cancer cells. We found that barnase is resistant to RI. In MTT cell viability assay, barnase was cytotoxic to human carcinoma cell lines with half-inhibitory concentrations (IC(50)) ranging from 0.2 to 13 microM and to leukemia cell lines with IC(50) values ranging from 2.4 to 82 microM. Also, we characterized the cytotoxic effects of barnase-based immunoRNase scFv 4D5-dibarnase, which consists of two barnase molecules serially fused to the single-chain variable fragment (scFv) of humanized antibody 4D5 that recognizes the extracellular domain of cancer marker HER2. The scFv 4D5-dibarnase specifically bound to HER2-positive cells and was internalized via receptor-mediated endocytosis. The intracellular localization of internalized scFv 4D5-dibarnase was determined by electronic microscopy. The cytotoxic effect of scFv 4D5-dibarnase on HER2-positive human ovarian carcinoma SKOV-3 cells (IC(50) = 1.8 nM) was three orders of magnitude greater than that of barnase alone. Both barnase and scFv 4D5-dibarnase induced apoptosis in SKOV-3 cells accompanied by internucleosomal chromatin fragmentation, membrane blebbing, the appearance of phosphatidylserine on the outer leaflet of the plasma membrane, and the activation of caspase-3.These results demonstrate that barnase is a potent toxic agent for targeting to cancer cells

    The role of electrostatic interactions in the antitumor activity of dimeric RNases

    No full text
    The cytotoxic action of some ribonucleases homologous to bovine pancreatic RNase A, the superfamily prototype, has interested and intrigued investigators. Their ribonucleolytic activity is essential for their cytotoxic action, and their target RNA is in the cytosol. It has been proposed that the cytosolic RNase inhibitor (cRI) plays a major role in determining the ability of an RNase to be cytotoxic. However, to interact with cRI RNases must reach the cytosol, and cross intracellular membranes. To investigate the interactions of cytotoxic RNases with membranes, cytotoxic dimeric RNases resistant, or considered to be resistant to cRI, were assayed for their effects on negatively charged membranes. Furthermore, we analyzed the electrostatic interaction energy of the RNases complexed in silico with a model membrane. The results of this study suggest that close correlations can be recognized between the cytotoxic action of a dimeric RNase and its ability to complex and destabilize negatively charged membranes
    corecore