7 research outputs found

    Elucidation of spheroid formation with and without the extrusion step

    No full text
    Spheroid formation mechanisms were investigated using extrusion-spheronization (ES) and rotary processing (RP). Using ES (cross-hatch), ES (teardrop), and RP (teardrop), spheroids with similar mass median diameter (MMD) and span were produced using equivalent formulation and spheronization conditions. During spheronization, the teardrop-studded rotating frictional surface, with increased peripheral tip speed and duration, produced spheroids of equivalent MMD and span to those produced by the cross-hatch rotating frictional plate surface. The roundness of these spheroids was also similar. RP required less water to produce spheroids of MMD similar to that of spheroids produced by ES. However, these RP spheroids were less spherical. Image analysis of 625 spheroids per batch indicated that the size distribution of RP spheroids had significantly greater SD, positive skewness, and kurtosis. Morphological examination of time-sampled spheroids produced by ES indicated that spheroid formation occurred predominatly by attrition and layering, while RP spheroids were formed by nucleation, agglomeration, layering, and coalescence. RP produced spheroids with higher crushing strength than that of ES-produced spheroids. The amount of moisture lost during spheronization for spheroids produced by ES had minimal influence on their eventual size. Differences in process and formulation parameters, in addition to size distribution and observed morphological changes, enabled a greater understanding of spheroid formation and methods to optimize spheroid production

    Design and In Vitro Evaluation of Novel Sustained-Release Double-Layer Tablets of Lornoxicam: Utility of Cyclodextrin and Xanthan Gum Combination

    No full text
    The objective of the present study was to develop new directly compressed, double-layer tablets (DLTs) of lornoxicam, a highly potent nonsteroidal anti-inflammatory drug with short half-life, that are characterized by initial burst drug release in the stomach and comply with the release requirements of sustained-release products. Each of the proposed DLTs is composed of a fast-release layer and a sustained-release layer, anticipating rapid drug release that starts in the stomach to rapidly alleviate the symptoms and continues in the intestine to maintain protracted analgesic effect. An amorphous, freeze-dried inclusion complex of lornoxicam with hydroxypropyl-β-cyclodextrin, present in 1:2 (drug/cyclodextrin) molar ratio, was employed in the fast-release layer to enhance the dissolution of lornoxicam in the stomach and assure rapid onset of its analgesic effect. Xanthan gum (XG), a hydrophilic matrix-forming agent, was integrated in the sustained-release layer to provide appropriate sustainment of drug release. The weight ratios between the sustained-release layer and fast-release layer present in DLTs were adjusted to reach optimal formulations. DLTs composed of sustained-release layer (40% XG) to fast-release layer in 2:1 weight ratio and those composed of sustained-release layer (50% XG) to fast-release layer in 1:1 weight ratio showed the desired release profile. The drug contained in the fast-release layer showed an initial burst drug release of more than 30% of its drug content during the first 30 min of the release study followed by gradual release of the drug for a period of 8 h

    Natural Polysaccharides in Hydrophilic Matrices

    No full text
    corecore