2 research outputs found

    Alternative beneficiation of tantalite and removal of radioactive oxides from Ethiopian Kenticha pegmatite–spodumene ores

    No full text
    The beneficiation methods for Ethiopian Kenticha pegmatite–spodumene ores were assessed through mineralogical and quantitative analyses with X-ray diffraction (XRD) and energy-dispersive X-ray fluorescence (EDXRF). The tantalite in the upper zone of the Kenticha pegmatite–spodumene deposit is 58.7wt% higher than that in the inner zone. XRD analysis revealed that the upper zone is dominated by manganocolumbite, whereas the inner zone is predominantly tantalite-Mn. Repeated cleaning and beneficiation of the upper-zone ore resulted in concentrate compositions of 57.34wt% of Ta 2 O 5 and 5.41wt% of Nb 2 O 5 . Washing the tantalite concentrates using 1vol% KOH and 1 M H 2 SO 4 led to the removal of thorium and uranium radioactive oxides from the concentrate. The findings of this study suggest that the beneficiation and alkaline washing of Kenticha pegmatite–spodumene ores produce a high-grade export-quality tantalite concentrate with negligible radioactive oxides

    Separation of Radioactive Elements from Ethiopian Kenticha Pegmatite Ore by Hydrometallurgical Methods

    No full text
    The leaching and extraction behavior of uranium and thorium from a high-grade Ethiopian pegmatite ore in a mixture of hydrofluoric acid and sulfuric acid has been investigated. The effects of variables such as the temperature, particle size, acid concentration, and leaching time were studied. The leaching efficiency of uranium increased with increasing temperature to 150°C, at which 96% removal of uranium was achieved. Particles in the size range of − 100 + 75 μm resulted in the highest leaching of uranium, while formation of a colloidal suspension was observed when using a fine particle size fraction (− 75 μm). The dissolution of uranium increased with increasing leaching time. No significant systematic dependence of the leachability of thorium on the above variables was observed. Optimum extraction of uranium and thorium using D2EHPA was obtained when using aqueous/organic phase volume ratio of 1:1, solvent concentration of 0.3 M, and contact time of 20 min
    corecore