31,127 research outputs found
Use of an inertial navigation system for accurate track recovery and coastal oceanographic measurements
A data acquisition system using a Litton LTN-51 inertial navigation unit (INU) was tested and used for aircraft track recovery and for location and tracking from the air of targets at sea. The characteristic position drift of the INU is compensated for by sighting landmarks of accurately known position at discrete time intervals using a visual sighting system in the transparent nose of the Beechcraft 18 aircraft used. For an aircraft altitude of about 300 m, theoretical and experimental tests indicate that calculated aircraft and/or target positions obtained from the interpolated INU drift curve will be accurate to within 10 m for landmarks spaced approximately every 15 minutes in time. For applications in coastal oceanography, such as surface current mapping by tracking artificial targets, the system allows a broad area to be covered without use of high altitude photography and its attendant needs for large targets and clear weather
One Hour of Chemical Demonstrations
This article describes a diverse set of chemistry demonstrations especially selected to encourage student interaction and to be easily transported. The demonstrations may be presented at a level that can be tailored to any audience– from very young children to high school students planning careers in science. An ideal environment is a small classroom with 20-30 students where everyone can take part in the discussion. Once the chemicals are prepared, the collection of demonstrations takes about ten minutes to set-up, and one hour (or less) to perform. Very little is needed at the visiting site, no more than a table and a pitcher of water. A single electrical outlet is useful, but not essential. In Table 2 th
Monte Carlo Markov Chain parameter estimation in semi-analytic models of galaxy formation
We present a statistical exploration of the parameter space of the De Lucia and Blaizot version of the Munich semi-analytic (SA) model built upon the Millennium dark matter simulation. This is achieved by applying a Monte Carlo Markov Chain method to constrain the six free parameters that define the stellar and black hole mass functions at redshift zero. The model is tested against three different observational data sets, including the galaxy K-band luminosity function, B - V colours and the black hole-bulge mass relation, separately and combined, to obtain mean values, confidence limits and likelihood contours for the best-fitting model. Using each observational data set independently, we discuss how the SA model parameters affect each galaxy property and find that there are strong correlations between them. We analyse to what extent these are simply reflections of the observational constraints, or whether they can lead to improved understandings of the physics of galaxy formation.
When all the observations are combined, we find reasonable agreement between the majority of the previously published parameter values and our confidence limits. However, the need to suppress dwarf galaxy formation requires the strength of the supernova feedback to be significantly higher in our best-fitting solution than in previous work.
To balance this, we require the feedback to become ineffective in haloes of lower mass than before, so as to permit the formation of sufficient high-luminosity galaxies: unfortunately, this leads to an excess of galaxies around L*. Although the best fit is formally consistent with the data, there is no region of parameter space that reproduces the shape of galaxy luminosity function across the whole magnitude range.
For our best fit, we present the model predictions for the bJ-band luminosity and stellar mass functions. We find a systematic disagreement between the observed mass function and the predictions from the K-band constraint, which we explain in light of recent works that suggest uncertainties of up to 0.3 dex in the mass determination from stellar population synthesis models.
We discuss modifications to the SA model that might simultaneously improve the fit to the observed mass function and reduce the reliance on excessive supernova feedback in small haloes
String universality in ten dimensions
We show that the supergravity theories in ten dimensions with
gauge groups and are not consistent
quantum theories. Cancellation of anomalies cannot be made compatible with
supersymmetry and abelian gauge invariance. Thus, in ten dimensions all
supersymmetric theories of gravity without known inconsistencies are realized
in string theory.Comment: 7 pages, 1 figure, LaTeX. v2: typos corrected on version appearing in
PR
Study of loss in superconducting coplanar waveguide resonators
Superconducting coplanar waveguide (SCPW) resonators have a wide range of
applications due to the combination of their planar geometry and high quality
factors relative to normal metals. However, their performance is sensitive to
both the details of their geometry and the materials and processes that are
used in their fabrication. In this paper, we study the dependence of SCPW
resonator performance on materials and geometry as a function of temperature
and excitation power. We measure quality factors greater than at
high excitation power and at a power comparable to that generated
by a single microwave photon circulating in the resonator. We examine the
limits to the high excitation power performance of the resonators and find it
to be consistent with a model of radiation loss. We further observe that while
in all cases the quality factors are degraded as the temperature and power are
reduced due to dielectric loss, the size of this effect is dependent on
resonator materials and geometry. Finally, we demonstrate that the dielectric
loss can be controlled in principle using a separate excitation near the
resonance frequencies of the resonator.Comment: Replacing original version. Changes made based on referee comments.
Fixed typo in equation (3) and added appendi
Ageing makes us dyslexic
Background: The effects of typical ageing on spoken language are well known: word production is disproportionately affected while syntactic processing is relatively well preserved. Little is known, however, about how ageing affects reading.Aims: What effect does ageing have on written language processing? In particular, how does it affect our ability to read words? How does it affect phonological awareness (our ability to manipulate the sounds of our language)?Methods & Procedures: We tested 14 people with Parkinson's disease (PD), 14 typically ageing adults (TAA), and 14 healthy younger adults on a range of background neuropsychological tests and tests of phonological awareness. We then carried out an oral naming experiment where we manipulated consistency, and a nonword repetition task where we manipulated the word-likeness of the nonwords.Outcomes & Results: We find that normal ageing causes individuals to become mildly phonologically dyslexic in that people have difficulty pronouncing nonwords. People with Parkinson's disease perform particularly poorly on language tasks involving oral naming and metalinguistic processing. We also find that ageing causes difficulty in repeating nonwords. We show that these problems are associated with a more general difficulty in processing phonological information, supporting the idea that language difficulties, including poorer reading in older age, can result from a general phonological deficit.Conclusions: We suggest that neurally this age-induced dyslexia is associated with frontal deterioration (and perhaps deterioration in other regions) and cognitively to the loss of executive processes that enable us to manipulate spoken and written language. We discuss implications for therapy and treatment
Relation between Light Cone Distribution Amplitudes and Shape Function in B mesons
The Bakamjian-Thomas relativistic quark model provides a Poincar\'e
representation of bound states with a fixed number of constituents and, in the
heavy quark limit, form factors of currents satisfy covariance and Isgur-Wise
scaling. We compute the Light Cone Distribution Amplitudes of mesons
as well as the Shape Function , that enters
in the decay , that are also covariant in this class of
models. The LCDA and the SF are related through the quark model wave function.
The former satisfy, in the limit of vanishing constituent light quark mass, the
integral relation given by QCD in the valence sector of Fock space. Using a
gaussian wave function, the obtained is identical to the so-called
Roman Shape Function. From the parameters for the latter that fit the spectrum we predict the behaviour of . We
discuss the important role played by the constituent light quark mass. In
particular, although for vanishing light quark mass, a
non-vanishing mass implies the unfamiliar result . Moreover,
we incorporate the short distance behaviour of QCD to ,
which has sizeable effects at large . We obtain the values for the
parameters GeV and
GeV. We compare with other theoretical approaches and illustrate the
great variety of models found in the literature for the functions ; hence the necessity of imposing further constraints as in the
present paper. We briefly review also the different phenomena that are
sensitive to the LCDA.Comment: 6 figure
- …