46,653 research outputs found
Space-time Torsion and Neutrino Oscillations in Vacuum
The objective of this study is to verify the consistency of the prescription
of alternative minimum coupling (connection) proposed by the Teleparallel
Equivalent to General Relativity (TEGR) for the Dirac equation. With this aim,
we studied the problem of neutrino oscillations in Weitzenbock space-time in
the Schwarzschild metric. In particular, we calculate the phase dynamics of
neutrinos. The relation of spin of the neutrino with the space-time torsion is
clarified through the determination of the phase differences between spin
eigenstates of the neutrinos.Comment: 07 pages, no figure
Towards a knowledge-based system to assist the Brazilian data-collecting system operation
A study is reported which was carried out to show how a knowledge-based approach would lead to a flexible tool to assist the operation task in a satellite-based environmental data collection system. Some characteristics of a hypothesized system comprised of a satellite and a network of Interrogable Data Collecting Platforms (IDCPs) are pointed out. The Knowledge-Based Planning Assistant System (KBPAS) and some aspects about how knowledge is organized in the IDCP's domain are briefly described
Inclusive hadron and photon production at LHC in dipole momentum space
Using a momentum space model for the dipole scattering amplitude we present
an analysis of the saturation effects at LHC energies, describing the data on
proton-proton and proton-lead collisions. The model is based on the asymptotic
solutions of the Balitsky-Kovchegov equation, being ideal in the saturation
domain where the target wave function has a high occupation number. We also
make predictions for the nuclear modification ratios on charged hadron and
prompt photon production in the forward region, where the high parton density
effects are important.Comment: New section added and typos corrected. To be published in PR
Astrometry of mutual approximations between natural satellites. Application to the Galilean moons
Typically we can deliver astrometric positions of natural satellites with
errors in the 50-150 mas range. Apparent distances from mutual phenomena, have
much smaller errors, less than 10 mas. However, this method can only be applied
during the equinox of the planets. We developed a method that can provide
accurate astrometric data for natural satellites -- the mutual approximations.
The method can be applied when any two satellites pass close by each other in
the apparent sky plane. The fundamental parameter is the central instant
of the passage when the distances reach a minimum.
We applied the method for the Galilean moons. All observations were made with
a 0.6 m telescope with a narrow-band filter centred at 889 nm with width of 15
nm which attenuated Jupiter's scattered light. We obtained central instants for
14 mutual approximations observed in 2014-2015. We determined with an
average precision of 3.42 mas (10.43 km). For comparison, we also applied the
method for 5 occultations in the 2009 mutual phenomena campaign and for 22
occultations in the 2014-2015 campaign. The comparisons of determined by
our method with the results from mutual phenomena show an agreement by less
than 1-sigma error in , typically less than 10 mas. This new method is
particularly suitable for observations by small telescopes.Comment: 13 pages, 11 figures and 8 tables. Based on observations made at the
Laborat\'orio Nacional de Astrof\'isica (LNA), Itajub\'a-MG, Brazi
A proposal for a generalized canonical osp(1,2) quantization of dynamical systems with constraints
The aim of this paper is to consider a possibility of constructing for
arbitrary dynamical systems with first-class constraints a generalized
canonical quantization method based on the osp(1,2) supersymmetry principle.
This proposal can be considered as a counterpart to the osp(1,2)-covariant
Lagrangian quantization method introduced recently by Geyer, Lavrov and
M\"ulsch. The gauge dependence of Green's functions is studied. It is shown
that if the parameter m^2 of the osp(1,2) superalgebra is not equal to zero
then the vacuum functional and S-matrix depend on the gauge. In the limit the gauge independence of vacuum functional and S - matrix are restored. The
Ward identities related to the osp(1,2) symmetry are derived.Comment: Revised version. To appear in Mod.Phys.Lett.
Quantum Effects in the Spacetime of a Magnetic Flux Cosmic String
In this work we compute the vacuum expectation values of the energy-momentum
tensor and the average value of a massive, charged scalar field in the presence
of a magnetic flux cosmic string for both zero- and finite-temperature cases.Comment: To appear in the Int. Journal of Modern Phys. A (special issue).
Proceedings of the Second International Londrina Winter School on
Mathematical Methods in Physics, Londrina, Brazil, August 200
Experimental Determination of Thermal Entanglement in Spin Clusters using Magnetic Susceptibility Measurements
The present work reports an experimental observation of thermal entanglement
in a clusterized spin chain formed in the compound NaCuSiO.
The presence of entanglement was investigated through two measured quantities,
an Entanglement Witness and the Entanglement of Formation, both derived from
the magnetic susceptibility. It was found that pairwise entanglement exists
below K. Tripartite entanglement was also observed below K. A theoretical study of entanglement evolution as a function of applied
field and temperature is also presented.Comment: Submited to Phys. Rev.
- …