28,856 research outputs found

    A proposal for a first class conversion formalism based on the symmetries of the Wess-Zumino terms

    Get PDF
    We propose a new procedure to embed second class systems by introducing Wess-Zumino (WZ) fields in order to unveil hidden symmetries existent in the models. This formalism is based on the direct imposition that the new Hamiltonian must be invariant by gauge-symmetry transformations. An interesting feature in this approach is the possibility to find a representation for the WZ fields in a convenient way, which leads to preserve the gauge symmetry in the original phase space. Consequently, the gauge-invariant Hamiltonian can be written only in terms of the original phase-space variables. In this situation, the WZ variables are only auxiliary tools that permit to reveal the hidden symmetries present in the original second class model. We apply this formalism to important physical models: the reduced-SU(2) Skyrme model, the Chern-Simons-Proca quantum mechanics and the chiral bosons field theory. In all these systems, the gauge-invariant Hamiltonians are derived in a very simple way.Comment: Revised version. Title changed for Gauging by symmetries. To appear in IJMP

    Equivalence between different classical treatments of the O(N) nonlinear sigma model and their functional Schrodinger equations

    Full text link
    In this work we derive the Hamiltonian formalism of the O(N) non-linear sigma model in its original version as a second-class constrained field theory and then as a first-class constrained field theory. We treat the model as a second-class constrained field theory by two different methods: the unconstrained and the Dirac second-class formalisms. We show that the Hamiltonians for all these versions of the model are equivalent. Then, for a particular factor-ordering choice, we write the functional Schrodinger equation for each derived Hamiltonian. We show that they are all identical which justifies our factor-ordering choice and opens the way for a future quantization of the model via the functional Schrodinger representation.Comment: Revtex version, 17 pages, substantial change

    A comparative study for the pair-creation contact process using series expansions

    Full text link
    A comparative study between two distinct perturbative series expansions for the pair-creation contact process is presented. In contrast to the ordinary contact process, whose supercritical series expansions provide accurate estimates for its critical behavior, the supercritical approach does not work properly when applied to the pair-creation process. To circumvent this problem a procedure is introduced in which one-site creation is added to the pair-creation. An alternative method is the generation of subcritical series expansions which works even for the case of the pure pair-creation process. Differently from the supercritical case, the subcritical series yields estimates that are compatible with numerical simulations

    Structural and dynamical properties of a quasi-one-dimensional classical binary system

    Full text link
    The ground state configurations and the \lq{}\lq{}normal\rq{}\rq{} mode spectra of a quasiquasi-one-dimensional (Q1D) binary system of charged particles interacting through a screened Coulomb potential are presented. The minimum energy configurations were obtained analytically and independently through molecular dynamic simulations. A rich variety of ordered structures were found as a function of the screening parameter, the particle density, and the ratio between the charges of the distinct types of particles. Continuous and discontinuous structural transitions, as well as an unexpected symmetry breaking in the charge distribution are observed when the density of the system is changed. For near equal charges we found a disordered phase where a mixing of the two types of particles occurs. The phonon dispersion curves were calculated within the harmonic approximation for the one- and two-chain structures.Comment: 11 pages, 11 fig

    Accelerating universes driven by bulk particles

    Full text link
    We consider our universe as a 3d domain wall embedded in a 5d dimensional Minkowski space-time. We address the problem of inflation and late time acceleration driven by bulk particles colliding with the 3d domain wall. The expansion of our universe is mainly related to these bulk particles. Since our universe tends to be permeated by a large number of isolated structures, as temperature diminishes with the expansion, we model our universe with a 3d domain wall with increasing internal structures. These structures could be unstable 2d domain walls evolving to fermi-balls which are candidates to cold dark matter. The momentum transfer of bulk particles colliding with the 3d domain wall is related to the reflection coefficient. We show a nontrivial dependence of the reflection coefficient with the number of internal dark matter structures inside the 3d domain wall. As the population of such structures increases the velocity of the domain wall expansion also increases. The expansion is exponential at early times and polynomial at late times. We connect this picture with string/M-theory by considering BPS 3d domain walls with structures which can appear through the bosonic sector of a five-dimensional supergravity theory.Comment: To appear in Phys. Rev. D, 16 pages, 3 eps figures, minor changes and references adde

    Teores foliares de macro e micronutrientes no abacaxizeiro Imperial em função de doses de nitrogênio e potássio.

    Get PDF
    Diversas pesquisas são desenvolvidas em diferentes ecossistemas buscando o refinamento das recomendações de adubação. O objetivo deste trabalho foi avaliar o efeito de doses de nitrogênio e potássio nos teores foliares de macro e micronutrientes no abacaxizeiro ?Imperial?, nas condições edafoclimáticas do Extremo Sul da Bahia. O experimento foi realizado no município de Porto Seguro, Bahia. O abacaxizeiro ?Imperial? foi plantado no espaçamento 0,90 x 0,40 x 0,40 m. Foram testadas quatro doses de N (0, 160, 320, 550 kg ha-1) e quatro doses de K2O (0, 240, 480 e 600 kg ha-1), em delineamento experimental em blocos ao acaso, com cinco repetições, em esquema fatorial completo 42. Aos 12 meses após o plantio foram coletadas folhas ?D? e determinados os teores de macro e micronutrientes. Observou-se que as doses de N diminuíram linearmente os teores foliares de P, K e S e, de forma quadrática, os teores de Mn. O incremento das doses de K diminuíram de forma linear os teores foliares de N, P, Ca e Mg. Os teores foliares de N e K, estimados nas doses máximas testadas, foram 12,8 g kg-1 e 31,8 g kg-1 respectivamente

    Mean-field calculation of critical parameters and log-periodic characterization of an aperiodic-modulated model

    Full text link
    We employ a mean-field approximation to study the Ising model with aperiodic modulation of its interactions in one spatial direction. Two different values for the exchange constant, JAJ_A and JBJ_B, are present, according to the Fibonacci sequence. We calculated the pseudo-critical temperatures for finite systems and extrapolate them to the thermodynamic limit. We explicitly obtain the exponents β\beta, δ\delta, and γ\gamma and, from the usual scaling relations for anisotropic models at the upper critical dimension (assumed to be 4 for the model we treat), we calculate α\alpha, ν\nu, ν//\nu_{//}, η\eta, and η//\eta_{//}. Within the framework of a renormalization-group approach, the Fibonacci sequence is a marginal one and we obtain exponents which depend on the ratio r≡JB/JAr \equiv J_B/J_A, as expected. But the scaling relation γ=β(δ−1)\gamma = \beta (\delta -1) is obeyed for all values of rr we studied. We characterize some thermodynamic functions as log-periodic functions of their arguments, as expected for aperiodic-modulated models, and obtain precise values for the exponents from this characterization.Comment: 17 pages, including 9 figures, to appear in Phys. Rev.
    • …
    corecore