110,186 research outputs found

    Measurements of electrons from heavy-flavour hadron decays in pp, p-Pb and Pb-Pb collisions with ALICE at the LHC

    Full text link
    Heavy-flavour hadrons, i. e. hadrons carrying charm or beauty quarks, are a well-suited probe to study the Quark-Gluon Plasma (QGP) in relativistic heavy-ion collisions. For this reason, measurements of electrons from heavy-flavour hadron decays have been performed in pp, p-Pb and Pb-Pb collisions at the LHC with the ALICE detector. Results for the nuclear modification factors (RpAR_{\rm{pA}} and RAAR_{\rm{AA}}) support a final-state energy loss of heavy quarks in central Pb-Pb collisions and, in semi-central collisions a positive elliptic flow coefficient v2v_{2} of electrons from heavy-flavour hadron decays was observed. Furthermore, a double-ridge structure was observed in the measured two-particle angular correlation distribution, triggered by heavy-flavour decay electrons, in high-multiplicity p-Pb collisions relative to low-multiplicity p-Pb collisions and to pp collisions.Comment: Hard Probes 2013 conference proceedin

    Validation of back-calculation equations for juvenile bluefish (Pomatomus saltatrix) with the use of tetracycline-marked otoliths

    Get PDF
    In recent years, a decrease in the abundance of bluefish (Pomatomus saltatrix) has been observed (Fahay et al., 1999; Munch and Conover, 2000) that has led to increased interest in a better understanding the life history of the species. Estimates of several young-of-the-year (YOY) life history characteristics, including the importance and use of estuaries as nursery habitat (Kendall and Walford, 1979) and size-dependant mortality (Hare and Cowen, 1997), are reliant upon the accuracy of growth determination. By using otoliths, it is possible to use back-calculation formulae (BCFs) to estimate the length at certain ages and stages of development for many species of fishes. Use of otoliths to estimate growth in this way can provide the same information as long-term laboratory experiments and tagging studies without the time and expense of rearing or recapturing fish. The difficulty in using otoliths in this way lies in validating that 1) there is constancy in the periodicity of the increment formation, and 2) there is no uncoupling of the relationship between somatic and otolith growth. To date there are no validation studies demonstrating the relationship between otolith growth and somatic growth for bluefish. Daily increment formation in otoliths has been documented for larval (Hare and Cowen, 1994) and juvenile bluefish (Nyman and Conover, 1988). Hare and Cowen (1995) found ageindependent variability in the ratio of otolith size to body length in early age bluefish, although these differences varied between ontogenetic stages. Furthermore, there have been no studies where an evaluation of back-calculation methods has been combined with a validation of otolithderived lengths for juvenile bluefish

    A variational restriction theorem

    Get PDF
    We establish variational estimates related to the problem of restricting the Fourier transform of a three-dimensional function to the two-dimensional Euclidean sphere. At the same time, we give a short survey of the recent field of maximal Fourier restriction theory.Comment: 10 pages, v2: bibliography is updated, a short survey of the maximal Fourier restriction is include
    corecore