33,898 research outputs found

    Chaos and a Resonance Mechanism for Structure Formation in Inflationary Models

    Get PDF
    We exhibit a resonance mechanism of amplification of density perturbations in inflationary mo-dels, using a minimal set of ingredients (an effective cosmological constant, a scalar field minimally coupled to the gravitational field and matter), common to most models in the literature of inflation. This mechanism is based on the structure of homoclinic cylinders, emanating from an unstable periodic orbit in the neighborhood of a saddle-center critical point, present in the phase space of the model. The cylindrical structure induces oscillatory motions of the scales of the universe whenever the orbit visits the neighborhood of the saddle-center, before the universe enters a period of exponential expansion. The oscillations of the scale functions produce, by a resonance mechanism, the amplification of a selected wave number spectrum of density perturbations, and can explain the hierarchy of scales observed in the actual universe. The transversal crossings of the homoclinic cylinders induce chaos in the dynamics of the model, a fact intimately connected to the resonance mechanism occuring immediately before the exit to inflation.Comment: 4 pages. This essay received an Honorable Mention from the Gravity Research Foundation, 1998-Ed. To appear in Mod. Phys. Lett.

    Numerical study of a model for non-equilibrium wetting

    Full text link
    We revisit the scaling properties of a model for non-equilibrium wetting [Phys. Rev. Lett. 79, 2710 (1997)], correcting previous estimates of the critical exponents and providing a complete scaling scheme. Moreover, we investigate a special point in the phase diagram, where the model exhibits a roughening transition related to directed percolation. We argue that in the vicinity of this point evaporation from the middle of plateaus can be interpreted as an external field in the language of directed percolation. This analogy allows us to compute the crossover exponent and to predict the form of the phase transition line close to its terminal point.Comment: 8 pages, 8 figure

    Spatio-temporal conjecture for diffusion

    Full text link
    We present here a conjecture about the equivalence between the noise density of states of a system governed by a generalized Langevin equation and the fluctuation in the energy density of states in a Hamiltonian system. We present evidence of this for a disordered Heisenberg system.Comment: 6 pages, 1 figure. Submitted to Physica
    • …
    corecore