24,228 research outputs found

    Cool stars in NGC 2547 and pre main sequence lithium depletion

    Get PDF
    We present the results of a spectroscopic survey of X-ray selected, low-mass candidate members of the young open cluster NGC 2547. Using a combination of photometry, spectroscopic indices and radial velocities we refine our candidate list and then use our spectroscopy to study the progression of lithium depletion in low-mass pre main sequence stars. We derive lithium abundances or upper limits for all our candidate members, which have effective temperatures in the range 5000>Teff>3200K, and compare these with predictions for lithium burning and depletion provided by a number of models and also with the lithium depletion seen in younger and older stars. We find that some models can reproduce the lithium abundance pattern of NGC 2547 if the cluster has an age of ~20-35Myr, which is also indicated by fits to low-mass isochrones in the Hertzsprung-Russell diagram. But the lack of significant further lithium depletion between NGC 2547 and older clusters argues for an age of at least 50Myr, more in keeping with the lack of lithium observed in even fainter NGC 2547 candidates. We show that reconciliation of these age estimates may require additions to the physics incorporated in current generations of pre main sequence models.Comment: Accepted for publication in MNRAS (better version of Fig.1 available at http://www.astro.keele.ac.uk/~rdj/

    Roteiro metodológico para planos de manejo em fazendas experimentais.

    Get PDF
    bitstream/CNPF-2009-09/44920/1/com_tec205.pd

    Symmetry, bifurcation and stacking of the central configurations of the planar 1+4 body problem

    Full text link
    In this work we are interested in the central configurations of the planar 1+4 body problem where the satellites have different infinitesimal masses and two of them are diametrically opposite in a circle. We can think this problem as a stacked central configuration too. We show that the configuration are necessarily symmetric and the other sattelites has the same mass. Moreover we proved that the number of central configuration in this case is in general one, two or three and in the special case where the satellites diametrically opposite have the same mass we proved that the number of central configuration is one or two saying the exact value of the ratio of the masses that provides this bifurcation.Comment: 9 pages, 2 figures. arXiv admin note: text overlap with arXiv:1103.627
    corecore