35,798 research outputs found

    The Unruh Quantum Otto Engine

    Full text link
    We introduce a quantum heat engine performing an Otto cycle by using the thermal properties of the quantum vacuum. Since Hawking and Unruh, it has been established that the vacuum space, either near a black hole or for an accelerated observer, behaves as a bath of thermal radiation. In this work, we present a fully quantum Otto cycle, which relies on the Unruh effect for a single quantum bit (qubit) in contact with quantum vacuum fluctuations. By using the notions of quantum thermodynamics and perturbation theory we obtain that the quantum vacuum can exchange heat and produce work on the qubit. Moreover, we obtain the efficiency and derive the conditions to have both a thermodynamic and a kinematic cycle in terms of the initial populations of the excited state, which define a range of allowed accelerations for the Unruh engine.Comment: 31 pages, 11 figure

    Nonviolation of Bell's Inequality in Translation Invariant Systems

    Full text link
    The nature of quantum correlations in strongly correlated systems has been a subject of intense research. In particular, it has been realized that entanglement and quantum discord are present at quantum phase transitions and able to characterize it. Surprisingly, it has been shown for a number of different systems that qubit pairwise states, even when highly entangled, do not violate Bell's inequalities, being in this sense local. Here we show that such a local character of quantum correlations is in fact general for translation invariant systems and has its origins in the monogamy trade-off obeyed by tripartite Bell correlations. We illustrate this result in a quantum spin chain with a soft breaking of translation symmetry. In addition, we extend the monogamy inequality to the NN-qubit scenario, showing that the bound increases with NN and providing examples of its saturation through uniformly generated random pure states.Comment: Published erratum added at the en

    Fourier Eigenfunctions, Uncertainty Gabor Principle and Isoresolution Wavelets

    Full text link
    Shape-invariant signals under Fourier transform are investigated leading to a class of eigenfunctions for the Fourier operator. The classical uncertainty Gabor-Heisenberg principle is revisited and the concept of isoresolution in joint time-frequency analysis is introduced. It is shown that any Fourier eigenfunction achieve isoresolution. It is shown that an isoresolution wavelet can be derived from each known wavelet family by a suitable scaling.Comment: 6 pages, XX Simp\'osio Bras. de Telecomunica\c{c}\~oes, Rio de Janeiro, Brazil, 2003. Fixed typo

    Overcoming ambiguities in classical and quantum correlation measures

    Full text link
    We identify ambiguities in the available frameworks for defining quantum, classical, and total correlations as measured by discordlike quantifiers. More specifically, we determine situations for which either classical or quantum correlations are not uniquely defined due to degeneracies arising from the optimization procedure over the state space. In order to remove such degeneracies, we introduce a general approach where correlations are independently defined, escaping therefore from a degenerate subspace. As an illustration, we analyze the trace-norm geometric quantum discord for two-qubit Bell-diagonal states.Comment: 5 pages, 2 figures. v2: Minor corrections. Published versio

    The fluctuation-dissipation theorem and the linear Glauber model

    Full text link
    We obtain exact expressions for the two-time autocorrelation and response functions of the dd-dimensional linear Glauber model. Although this linear model does not obey detailed balance in dimensions d≥2d\geq 2, we show that the usual form of the fluctuation-dissipation ratio still holds in the stationary regime. In the transient regime, we show the occurence of aging, with a special limit of the fluctuation-dissipation ratio, X∞=1/2X_{\infty}=1/2, for a quench at the critical point.Comment: Accepted for publication (Physical Review E

    Compactly Supported Wavelets Derived From Legendre Polynomials: Spherical Harmonic Wavelets

    Full text link
    A new family of wavelets is introduced, which is associated with Legendre polynomials. These wavelets, termed spherical harmonic or Legendre wavelets, possess compact support. The method for the wavelet construction is derived from the association of ordinary second order differential equations with multiresolution filters. The low-pass filter associated with Legendre multiresolution analysis is a linear phase finite impulse response filter (FIR).Comment: 6 pages, 6 figures, 1 table In: Computational Methods in Circuits and Systems Applications, WSEAS press, pp.211-215, 2003. ISBN: 960-8052-88-
    • …
    corecore