8 research outputs found

    Inverse columnar-equiaxed transition (CET) in 304 and 316l stainless steels melt by electron beam for additive manufacturing (AM)

    Get PDF
    According to Hunt’s columnar-to-equiaxed transition (CET) criterion, which is generally accepted, a high-temperature gradient (G) in the solidification front is preferable to a low G for forming columnar grains. Here, we report the opposite tendency found in the solidification microstructure of stainless steels partially melted by scanning electron beam for powder bed fusion (PBF)-type additive manufacturing. Equiaxed grains were observed more frequently in the region of high G rather than in the region of low G, contrary to the trend of the CET criterion. Computational thermal-fluid dynamics (CtFD) simulation has revealed that the fluid velocity is significantly higher in the case of smaller melt regions. The G on the solidification front of a small melt pool tends to be high, but at the same, the temperature gradient along the melt pool surface also tends to be high. The high melt surface temperature gradient can enhance Marangoni flow, which can apparently reverse the trend of equiaxed grain formation.Miyata Y., Okugawa M., Koizumi Y., et al. Inverse columnar-equiaxed transition (CET) in 304 and 316l stainless steels melt by electron beam for additive manufacturing (AM). Crystals 11, 856 (2021); https://doi.org/10.3390/cryst11080856

    Equiaxed grain formation by intrinsic heterogeneous nucleation via rapid heating and cooling in additive manufacturing of aluminum-silicon hypoeutectic alloy

    Get PDF
    The high strength of Al-Si hypoeutectic alloys additively manufactured by powder-bed fusion is of great scientific interest. To date, the mechanism of grain refinement near the fusion line, which contradicts conventional Hunt's columnar–equiaxed transition criteria, remains to be elucidated. Here we present the first report on the mechanism of grain refinement. When a laser was irradiated on cast Al-Si alloy consisting of coarse α-Al grain and α-Al/Si eutectic regions, grain refinement occurred only near the eutectic regions. This strongly suggests that the Si phase is crucial for grain refinement. Multi-phase-field simulation revealed that rapid heating due to the laser irradiation results in unmelted Si particles even above the liquidus temperature and that the particles act as heterogeneous nucleation sites during the subsequent re-solidification. These results suggest the feasibility of a novel inoculant-free grain refinement that is applicable to eutectic alloys comprising phases with a significant melting point difference.Masayuki Okugawa, Yuta Ohigashi, Yuya Furishiro, Yuichiro Koizumi, Takayoshi Nakano, Equiaxed grain formation by intrinsic heterogeneous nucleation via rapid heating and cooling in additive manufacturing of aluminum-silicon hypoeutectic alloy, Journal of Alloys and Compounds, Volume 919, 2022, 165812, ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2022.165812

    Fusion of Ni Plating on CP-Titanium by Electron Beam Single-Track Scanning: Toward a New Approach for Fabricating TiNi Self-Healing Shape Memory Coating

    Get PDF
    The limited wear resistance of commercially pure titanium (CP-Ti) hinders its use in abrasive and erosive environments, despite its good strength–weight ratio and corrosion resistance. This paper reports the first study proposing a novel method for wear-resistant TiNi coating through Ni plating and electron beam (EB) irradiation in an in situ synthetic approach. Single-track melting experiments were conducted using the EB to investigate the feasibility of forming a TiNi phase by fusing the Ni plate with the CP-Ti substrate. Varying beam powers were employed at a fixed scanning speed to determine the optimal conditions for TiNi phase formation. The concentration of the melt region was found to be approximate as estimated from the ratio of the Ni-plate thickness to the depth of the melt region, and the region with Ni-48.7 at.% Ti was successfully formed by EB irradiation. The study suggests that the mixing of Ti atoms and Ni atoms was facilitated by fluid flow induced by Marangoni and thermal convections. It is proposed that a more uniform TiNi layer can be achieved through multi-track melting under appropriate conditions. This research demonstrates the feasibility of utilizing EB additive manufacturing as a coating method and the potential for developing TiNi coatings with shape memory effects and pseudoelasticity.Wang L., Okugawa M., Konishi H., et al. Fusion of Ni Plating on CP-Titanium by Electron Beam Single-Track Scanning: Toward a New Approach for Fabricating TiNi Self-Healing Shape Memory Coating. Materials 16, 5449 (2023); https://doi.org/10.3390/ma16155449

    Inverse Columnar-Equiaxed Transition (CET) in 304 and 316L Stainless Steels Melt by Electron Beam for Additive Manufacturing (AM)

    No full text
    According to Hunt’s columnar-to-equiaxed transition (CET) criterion, which is generally accepted, a high-temperature gradient (G) in the solidification front is preferable to a low G for forming columnar grains. Here, we report the opposite tendency found in the solidification microstructure of stainless steels partially melted by scanning electron beam for powder bed fusion (PBF)-type additive manufacturing. Equiaxed grains were observed more frequently in the region of high G rather than in the region of low G, contrary to the trend of the CET criterion. Computational thermal-fluid dynamics (CtFD) simulation has revealed that the fluid velocity is significantly higher in the case of smaller melt regions. The G on the solidification front of a small melt pool tends to be high, but at the same, the temperature gradient along the melt pool surface also tends to be high. The high melt surface temperature gradient can enhance Marangoni flow, which can apparently reverse the trend of equiaxed grain formation

    Fusion of Ni Plating on CP-Titanium by Electron Beam Single-Track Scanning: Toward a New Approach for Fabricating TiNi Self-Healing Shape Memory Coating

    No full text
    Wang L., Okugawa M., Konishi H., et al. Fusion of Ni Plating on CP-Titanium by Electron Beam Single-Track Scanning: Toward a New Approach for Fabricating TiNi Self-Healing Shape Memory Coating. Materials 16, 5449 (2023); https://doi.org/10.3390/ma16155449.The limited wear resistance of commercially pure titanium (CP-Ti) hinders its use in abrasive and erosive environments, despite its good strength–weight ratio and corrosion resistance. This paper reports the first study proposing a novel method for wear-resistant TiNi coating through Ni plating and electron beam (EB) irradiation in an in situ synthetic approach. Single-track melting experiments were conducted using the EB to investigate the feasibility of forming a TiNi phase by fusing the Ni plate with the CP-Ti substrate. Varying beam powers were employed at a fixed scanning speed to determine the optimal conditions for TiNi phase formation. The concentration of the melt region was found to be approximate as estimated from the ratio of the Ni-plate thickness to the depth of the melt region, and the region with Ni-48.7 at.% Ti was successfully formed by EB irradiation. The study suggests that the mixing of Ti atoms and Ni atoms was facilitated by fluid flow induced by Marangoni and thermal convections. It is proposed that a more uniform TiNi layer can be achieved through multi-track melting under appropriate conditions. This research demonstrates the feasibility of utilizing EB additive manufacturing as a coating method and the potential for developing TiNi coatings with shape memory effects and pseudoelasticity
    corecore