46 research outputs found

    Deletion of CDKAL1 Affects Mitochondrial ATP Generation and First-Phase Insulin Exocytosis

    Get PDF
    A variant of the CDKAL1 gene was reported to be associated with type 2 diabetes and reduced insulin release in humans; however, the role of CDKAL1 in β cells is largely unknown. Therefore, to determine the role of CDKAL1 in insulin release from β cells, we studied insulin release profiles in CDKAL1 gene knockout (CDKAL1 KO) mice.Total internal reflection fluorescence imaging of CDKAL1 KO β cells showed that the number of fusion events during first-phase insulin release was reduced. However, there was no significant difference in the number of fusion events during second-phase release or high K(+)-induced release between WT and KO cells. CDKAL1 deletion resulted in a delayed and slow increase in cytosolic free Ca(2+) concentration during high glucose stimulation. Patch-clamp experiments revealed that the responsiveness of ATP-sensitive K(+) (K(ATP)) channels to glucose was blunted in KO cells. In addition, glucose-induced ATP generation was impaired. Although CDKAL1 is homologous to cyclin-dependent kinase 5 (CDK5) regulatory subunit-associated protein 1, there was no difference in the kinase activity of CDK5 between WT and CDKAL1 KO islets.We provide the first report describing the function of CDKAL1 in β cells. Our results indicate that CDKAL1 controls first-phase insulin exocytosis in β cells by facilitating ATP generation, K(ATP) channel responsiveness and the subsequent activity of Ca(2+) channels through pathways other than CDK5-mediated regulation

    A Case of Pyostomatitis Vegetans Associated with Ulcerative Colitis.

    No full text

    A Case of Pyoderma Vegetans

    No full text

    Prospective single-arm observational study of human chymase inhibitor Polygonum hydropiper L in subjects with hypertension

    No full text
    Background and Purpose: Human chymase (h-chymase) is a serine protease that forms local angiotensin II and has been proven to be related to onset of hypertension, arteriosclerosis, and post myocardial infarction cardiac remodeling. Since no chymase inhibitor was clinically available, an extensive screening for inhibition of h-chymase in three different extracts (water, hot water,  and ethanol) of approximately 800 food ingredients had been performed and we identified Polygonum hydropiper L (Polygonum). Using a dried and powdered Polygonum, we conducted a prospective, single-arm, pilot study to investigate its safety and antihypertensive effect in subjects with normal high blood pressure to moderate hypertension. Methods: First, a single oral dose of Polygonum powder (4000 mg) was administered to assess acute toxicity. Then, a pilot study was conducted in 11 subjects using the sequence of placebo and Polygonum for 2 weeks each. The dose of Polygonum was increased sequentially (200–2000 mg/day). Home blood pressure and pulse rate were monitored. Results: Oral administration of Polygonum (4000 mg) did not cause any adverse events. In the dose-escalation phase, evening systolic blood pressure was significantly decreased at 800 mg, 2000 mg doses post-treatment (p < 0.05, and p < 0.05, respectively). Depressor responders to Polygonum intake had significantly higher salt intake in spot urine (p < 0.05). No adverse events or reactions occurred. Conclusion: This was the first investigation that an h-chymase inhibitory Polygonum intake for safety and tolerability was proven and, in addition, chymase inhibitory Polygonum appeared to have depressor effect especially in a hypertensive subject with excessive salt intake

    Novel murine model of congenital diabetes: The insulin hyposecretion mouse

    No full text
    Abstract Aims/Introduction Diabetic animal models have made an enormous contribution to our understanding of the etiology of diabetes and the development of new medications. The aim of the present study was to develop and characterize a novel, non‐obese murine strain with spontaneous diabetes – the insulin hyposecretion (ihs) mouse. Materials and Methods During the development of the ICGN.B6‐Tns2WT strain as the control for the ICGN‐Tns2nph congenital nephrotic strain, diabetic mice were discovered and named ihs mice. Intraperitoneal insulin tolerance test, oral glucose tolerance test and an insulin secretion experiment by the pancreas perfusion system were carried out on ihs mice. The pancreatic islets were examined histologically, and the mRNA expression of pancreatic β‐cell‐specific genes or genes associated with monogenic diabetes was examined by RT‐qPCR. Results The ihs mice showed several distinctive diabetes‐related characteristics: (i) the onset of diabetes was observed only in the male mice; (ii) there were no differences in insulin content between the ihs and control mice; (iii) impaired insulin secretion was elicited by glucose, potassium chloride and sulfonylureas; (iv) there was a significant reduction of relative β‐cell volume with no signs of inflammation or fibrosis; (v) they showed a normal glycemic response to exogenous insulin; and (vi) the mice were not obese. Conclusions The ihs mouse provides a novel murine model of congenital diabetes that shows insulin secretion failure. This model allows not only an analysis of the progression of diabetes, but also the identification of unknown genes involved in insulin secretion

    Genetic locus responsible for diabetic phenotype in the insulin hyposecretion (ihs) mouse.

    No full text
    Diabetic animal models have made significant contributions to understanding the etiology of diabetes and to the development of new medications. Our research group recently developed a novel diabetic mouse strain, the insulin hyposecretion (ihs)mouse. The strain involves neither obesity nor insulitis but exhibits notable pancreatic β-cell dysfunction, distinguishing it from other well-characterized animal models. In ihs mice, severe impairment of insulin secretion from pancreas has been elicited by glucose or potassium chloride stimulation. To clarify the genetic basis of impaired insulin secretion, beginning with identifying the causative gene, genetic linkage analysis was performed using [(C57BL/6 × ihs) F1 × ihs] backcross progeny. Genetic linkage analysis and quantitative trait loci analysis for blood glucose after oral glucose loading indicated that a recessively acting locus responsible for impaired glucose tolerance was mapped to a 14.9-Mb region of chromosome 18 between D18Mit233 and D18Mit235 (the ihs locus). To confirm the gene responsible for the ihs locus, a congenic strain harboring the ihs locus on the C57BL/6 genetic background was developed. Phenotypic analysis of B6.ihs-(D18Mit233-D18Mit235) mice showed significant glucose tolerance impairment and markedly lower plasma insulin levels during an oral glucose tolerance test. Whole-genome sequencing and Sanger sequencing analyses on the ihs genome detected two ihs-specific variants changing amino acids within the ihs locus; both variants in Slc25a46 and Tcerg1 were predicted to disrupt the protein function. Based on information regarding gene functions involving diabetes mellitus and insulin secretion, reverse-transcription quantitative polymerase chain reaction analysis revealed that the relative abundance of Reep2 and Sil1 transcripts from ihs islets was significantly decreased whereas that of Syt4 transcripts were significantly increased compared with those of control C57BL/6 mice. Thus, Slc25a46, Tcerg1, Syt4, Reep2 and Sil1 are potential candidate genes for the ihs locus. This will be the focus of future studies in both mice and humans
    corecore