15,646 research outputs found
Anomalous Viscosity of an Expanding Quark-Gluon Plasma
We argue that an expanding quark-gluon plasma has an anomalous viscosity,
which arises from interactions with dynamically generated color fields. We
derive an expression for the anomalous viscosity in the turbulent plasma domain
and apply it to the hydrodynamic expansion phase, when the quark-gluon plasma
is near equilibrium. The anomalous viscosity dominates over the collisional
viscosity for weak coupling and not too late times. This effect may provide an
explanation for the apparent ``nearly perfect'' liquidity of the matter
produced in nuclear collisions at the Relativistic Heavy Ion Collider without
the assumption that it is a strongly coupled state.Comment: Final version accepted for publicatio
Characterization of the initial filamentation of a relativistic electron beam passing through a plasma
The linear instability that induces a relativistic electron beam passing
through a return plasma current to filament transversely is often related to
some filamentation mode with wave vector normal to the beam or confused with
Weibel modes. We show that these modes may not be relevant in this matter and
identify the most unstable mode on the two-stream/filamentation branch as the
main trigger for filamentation. This sets both the characteristic transverse
and longitudinal filamentation scales in the non-resistive initial stage.Comment: 4 page, 3 figures, to appear in PR
Momentum dependence of the energy gap in the superconducting state of optimally doped Bi2(Sr,R)2CuOy (R=La and Eu)
The energy gap of optimally doped Bi2(Sr,R)2CuOy (R=La and Eu) was probed by
angle resolved photoemission spectroscopy (ARPES) using a vacuum ultraviolet
laser (photon energy 6.994 eV) or He I resonance line (21.218 eV) as photon
source. The results show that the gap around the node at sufficiently low
temperatures can be well described by a monotonic d-wave gap function for both
samples and the gap of the R=La sample is larger reflecting the higher Tc.
However, an abrupt deviation from the d-wave gap function and an opposite R
dependence for the gap size were observed around the antinode, which represent
a clear disentanglement between the antinodal pseudogap and the nodal
superconducting gap.Comment: Submitted as the proceedings of LT2
Scalar Mass Bounds in Two Supersymmetric Extended Electroweak Gauge Models
In two recently proposed supersymmetric extended electroweak gauge models,
the reduced Higgs sector at the 100-GeV energy scale consists of only two
doublets, but they have quartic scalar couplings different from those of the
minimal supersymmetric standard model. In the SU(2) X SU(2) X U(1) model, there
is an absolute upper bound of about 145 GeV on the mass of the lightest neutral
scalar boson. In the SU(3) X U(1) model, there is only a parameter-dependent
upper bound which formally goes to infinity in a particular limitComment: 9 pages (6 figures not included), UCRHEP-T128 (July 1994
Location and Direction Dependent Effects in Collider Physics from Noncommutativity
We examine the leading order noncommutative corrections to the differential
and total cross sections for e+ e- --> q q-bar. After averaging over the
earth's rotation, the results depend on the latitude for the collider, as well
as the direction of the incoming beam. They also depend on scale and direction
of the noncommutativity. Using data from LEP, we exclude regions in the
parameter space spanned by the noncommutative scale and angle relative to the
earth's axis. We also investigate possible implications for phenomenology at
the future International Linear Collider.Comment: version to appear in PR
A Solution for Little Hierarchy Problem and b --> s gamma
We show that all the parameters which destabilize the weak scale can be taken
around the weak scale in the MSSM without conflicting with the SM Higgs mass
bound set by LEP experiment. The essential point is that if the lightest
CP-even Higgs h in the MSSM has only a small coupling to Z boson, g_{ZZh}, LEP
cannot generate the Higgs sufficiently. In the scenario, the SM Higgs mass
bound constrains the mass of the heaviest CP-even Higgs H which has the SM like
g_{ZZH} coupling. However, it is easier to make the heaviest Higgs heavy by the
effect of off-diagonal elements of the mass matrix of the CP-even Higgs because
the larger eigenvalue of 2 times 2 matrix becomes larger by introducing
off-diagonal elements. Thus, the smaller stop masses can be consistent with the
LEP constraints. Moreover, the two excesses observed at LEP Higgs search can
naturally be explained as the signals of the MSSM Higgs h and H in this
scenario. One of the most interesting results in the scenario is that all the
Higgs in the MSSM have the weak scale masses. For example, the charged Higgs
mass should be around 130 GeV. This looks inconsistent with the lower bound
obtained by the b --> s gamma process as m_{H^\pm}>350GeV. However, we show
that the amplitude induced by the charged Higgs can naturally be compensated by
that of the chargino if we take the mass parameters by which the little
hierarchy problem can be solved. The point is that the both amplitudes have the
same order of magnitudes when all the fields in the both loops have the same
order of masses.Comment: 14 pages, 5 figures, input parameter slightly changed, figures
replaced, references correcte
The development of a knowledge base for basic active structures: an example case of dopamine agonists
<p>Abstract</p> <p>Background</p> <p>Chemical compounds affecting a bioactivity can usually be classified into several groups, each of which shares a characteristic substructure. We call these substructures "basic active structures" or BASs. The extraction of BASs is challenging when the database of compounds contains a variety of skeletons. Data mining technology, associated with the work of chemists, has enabled the systematic elaboration of BASs.</p> <p>Results</p> <p>This paper presents a BAS knowledge base, BASiC, which currently covers 46 activities and is available on the Internet. We use the dopamine agonists D1, D2, and Dauto as examples and illustrate the process of BAS extraction. The resulting BASs were reasonably interpreted after proposing a few template structures.</p> <p>Conclusions</p> <p>The knowledge base is useful for drug design. Proposed BASs and their supporting structures in the knowledge base will facilitate the development of new template structures for other activities, and will be useful in the design of new lead compounds via reasonable interpretations of active structures.</p
Angular Distribution of -rays from Neutron-Induced Compound States of La
Angular distribution of individual -rays, emitted from a
neutron-induced compound nuclear state via radiative capture reaction of
La(n,) has been studied as a function of incident neutron
energy in the epithermal region by using germanium detectors.
An asymmetry was defined as , where and
are integrals of low and high energy region of a neutron resonance
respectively, and we found that has the angular dependence of
, where is emitted angle of
-rays, with and in 0.74 eV
p-wave resonance.
This angular distribution was analyzed within the framework of interference
between s- and p-wave amplitudes in the entrance channel to the compound
nuclear state, and it is interpreted as the value of the partial p-wave neutron
width corresponding to the total angular momentum of the incident neutron
combined with the weak matrix element, in the context of the mechanism of
enhanced parity-violating effects. Additionally we used the result to quantify
the possible enhancement of the breaking of the time-reversal invariance in the
vicinity of the p-wave resonance.Comment: 14pages, 25 figure
Thermal leptogenesis in brane world cosmology
The thermal leptogenesis in brane world cosmology is studied. In brane world
cosmology, the expansion law is modified from the four-dimensional standard
cosmological one at high temperature regime in the early universe. As a result,
the well-known upper bound on the lightest light neutrino mass induced by the
condition for the out-of-equilibrium decay of the lightest heavy neutrino,
eV, can be moderated to be in the case of with the
lightest heavy neutrino mass () and the ``transition temperature''
(), at which the modified expansion law in brane world cosmology is
smoothly connecting with the standard one. This implies that the degenerate
mass spectrum of the light neutrinos can be consistent with the thermal
leptogenesis scenario. Furthermore, as recently pointed out, the gravitino
problem in supersymmetric case can be solved if the transition temperature is
low enough GeV. Therefore, even in the supersymmetric
case, thermal leptogenesis scenario can be successfully realized in brane world
cosmology.Comment: 9 pages, final versio
High surface quality micro machining of monocrystalline diamond by picosecond pulsed laser
In micro machining of monocrystalline diamond by pulsed laser, unique processing characteristics appeared only under a few ten picosecond pulse duration and a certain overlap rate of laser shot. Cracks mostly propagate in parallel direction to top surface of workpiece, although the laser beam axis is perpendicular to the surface. This processed area can keep diamond structure, and its surface roughness is smaller than R-a = 0.2 mu M. New laser micro machining method to keep diamond structure and small surface roughness is proposed. This method can contribute to reduce the polishing process in micro machining of diamond. (C) 2019 Published by Elsevier Ltd on behalf of CIRP
- …