32 research outputs found

    A bimetallic nanoantenna for directional colour routing

    Get PDF
    Recent progress in nanophotonics includes demonstrations of meta-materials displaying negative refraction at optical frequencies, directional single photon sources, plasmonic analogies of electromagnetically induced transparency and spectacular Fano resonances. The physics behind these intriguing effects is to a large extent governed by the same single parameter—optical phase. Here we describe a nanophotonic structure built from pairs of closely spaced gold and silver disks that show phase accumulation through material-dependent plasmon resonances. The bimetallic dimers show exotic optical properties, in particular scattering of red and blue light in opposite directions, in spite of being as compact as ∼λ3/100. These spectral and spatial photon-sorting nanodevices can be fabricated on a wafer scale and offer a versatile platform for manipulating optical response through polarization, choice of materials and geometrical parameters, thereby opening possibilities for a wide range of practical applications

    Theoretical Analysis the Optical Properties of Multi-coupled Silver Nanoshell Particles

    Get PDF
    The surface plasmon resonances of silver nanoshell particles are studied by Green’s function. The nanoshell system of plasmon resonances results from the coupling of the inner and outer shell surface plasmon. The shift of the nanoshell plasmon resonances wavelength is plotted against with different dielectric environments, several different dielectric cores, the ratio of the inner and outer radius, and also its assemblies. The results show that a red- and blue-shifted localized surface plasmon can be tuned over an extended wavelength range by varying dielectric environments, the dielectric constants and the radius of nanoshell core respectively. In addition, the separation distances, the distribution of electrical field intensity, the incident directions and its polarizations are also investigated. The study is useful to broaden the application scopes of Raman spectroscopy and nano-optics

    Electrochemical Sensor for Bilirubin Detection Using Screen Printed Electrodes Functionalized with Carbon Nanotubes and Graphene

    Get PDF
    Practice oriented point-of-care diagnostics require easy-to-handle, miniaturized, and low-cost analytical tools. In a novel approach, screen printed carbon electrodes (SPEs), which were functionalized with nanomaterials, are employed for selective measurements of bilirubin, which is an important biomarker for jaundice. Multi-walled carbon nanotubes (MWCNT) and graphene separately deposited on SPEs provide the core of an electrochemical sensor for bilirubin. The electrocatalytic activity towards bilirubin oxidation (bilirubin to biliverdin) was observed at +0.25 V. In addition, a further peak corresponding to the electrochemical conversion of biliverdin into purpurin appeared at +0.48 V. When compared to MWCNT, the graphene type shows a 3-fold lower detection limit (0.3 ± 0.022 nM and 0.1 ± 0.018 nM, respectively), moreover, the graphene type exhibits a larger linear range (0.1–600 µM) than MWCNT (0.5–500 µM) with a two-fold better sensitivity, i.e., 30 nA µM−1 cm−2, and 15 nA µM−1 cm−2, respectively. The viability is validated through measurements of bilirubin in blood serum samples and the selectivity is ensured by inhibiting common interfering biological substrates using an ionic nafion membrane. The presented approach enables the design and implementation of low cost and miniaturized electrochemical sensors

    Combined antenna and localized plasmon resonance in Raman scattering from Random arrays of silver-coated, vertically aligned multiwalled carbon nanotubes

    Get PDF
    The electric field enhancement associated with detailed structure within novel optical antenna nanostructures is modeled using the surface integral equation technique in the context of surface-enhanced Raman scattering (SERS). The antennae comprise random arrays of vertically aligned, multi-walled carbon nanotubes dressed with highly granular Ag. Different types of "hot-spot" underpinning the SERS are identified, but contrasting characteristics are revealed. Those at the outer edges of the Ag grains are antenna driven with field enhancement amplified in antenna antinodes while intergrain hotspots are largely independent of antenna activity Hot-spots between the tops of antennae leaning towards each other also appear to benefit from antenna amplification
    corecore