34 research outputs found

    Therapeutic strategies utilising SDF-1α in ischaemic cardiomyopathy

    Get PDF
    Heart failure is rapidly increasing in prevalence and will redraw the global landscape for cardiovascular health. Alleviating and repairing cardiac injury associated with myocardial infarction (MI) is key to improving this burden. Homing signals mobilise and recruit stem cells to the ischaemic myocardium where they exert beneficial paracrine effects. The chemoattractant cytokine SDF-1α and its associated receptor CXCR4 are upregulated after MI and appear to be important in this context. Activation of CXCR4 promotes both cardiomyocyte survival and stem cell migration towards the infarcted myocardium. These effects have beneficial effects on infarct size, and left ventricular remodelling and function. However, the timing of endogenous SDF-1α release and CXCR4 upregulation may not be optimal. Furthermore, current ELISA-based assays cannot distinguish between active SDF-1α, and SDF-1α inactivated by dipeptidyl peptidase 4 (DPP4). Current therapeutic approaches aim to recruit the SDF-1α-CXCR4 pathway or prolong SDF-1α life-time by preventing its cleavage by DPP4. This review assesses the evidence supporting these approaches and proposes SDF-1α as an important confounder in recent studies of DPP4 inhibitors

    Harnessing cellular aging in human stem cell models of amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative condition that is invariably fatal, usually within 3 to 5 years of diagnosis. The etiology of ALS remains unresolved and no effective treatments exist. There is therefore a desperate and unmet need for discovery of disease mechanisms to guide novel therapeutic strategies. The single major risk factor for ALS is aging, yet the molecular consequences of cell type-specific aging remain understudied in this context. Induced pluripotent stem cells (iPSCs) have transformed the standard approach of examining human disease, generating unlimited numbers of disease-relevant cells from patients, enabling analysis of disease mechanisms and drug screening. However, reprogramming patient cells to iPSCs reverses key hallmarks of cellular age. Therefore, although iPSC models recapitulate some disease hallmarks, a crucial challenge is to address the disparity between the advanced age of onset of neurodegenerative diseases and the fetal-equivalent maturational state of iPSC-derivatives. Increasing recognition of cell type-specific aging paradigms underscores the importance of heterogeneity in ultimately tipping the balance from a state of compensated dysfunction (clinically pre-symptomatic) to decompensation and progression (irreversible loss of neurological functions). In order to realize the true promise of iPSC technology in ALS, efforts need to prioritize faithfully recapitulating the clinical pathophysiological state, with proportionate emphasis on capturing the molecular sequelae of both cellular age and non-cell-autonomous disease mechanisms within this context

    Impact of seasonality on the dynamics of native Vitamin D repletion in long-term renal transplant patients

    Get PDF
    BACKGROUND: Renal transplant recipients (RTRs) are often Vitamin D (VitD) depleted as a result of both chronic kidney disease and mandated sun avoidance behaviours. Repleting VitD may be warranted, but how, and for how long, is unknown, as is the impact of seasonality on the success of repletion. We investigated the impact of seasonality on VitD status following VitD repletion in a large cohort of stable, long-term RTRs. METHODS: Serum 25-hydroxyvitamin D [25(OH)D] concentrations and bone biochemistry parameters were analysed from 102 VitD repletion courses in 98 RTRs that had undergone VitD repletion. Repletion was delivered over 6 months with either 240 000 IU colecalciferol if pre-repletion serum VitD was between 20 and 50 nmol/L, or with 360 000 IU if VitD was <20 nmol/L. Twelve months post-repletion 25(OH)D and parathyroid hormone (PTH) were available for 75 patients. RESULTS: At baseline, 25(OH)D was 20.1 ± 1.0 nmol/L, increasing to 65.4 ± 1.8 nmol/L following repletion (+7.55 nmol/L/month, P < 0.0001). Twelve months post-repletion and after no further VitD administration, 25(OH)D fell to 35.4 ± 1.8 nmol/L (14.2 ± 0.7 ng/mL; −2.50 nmol/L/month, P < 0.0001). PTH followed the opposite trend with baseline, repletion-end and post-repletion values being 144.2 ± 12.0, 109.6 ± 7.5 and 129.2 ± 11.4 ng/L, respectively. VitD repletion during the summer was associated with significantly higher at repletion-end 25(OH)D compared with any other time of year [summer 80.9 ± 4.0, autumn 64.1 ± 3.0 (P = 0.002), winter 48.9 ± 3.0 (P <0.001), spring 63.8 ± 2.5 nmol/L (P <0.001)]. There was no hypercalcaemia during repletion and renal transplant function remained stable without any evidence of allograft rejection. CONCLUSIONS: VitD repletion can safely and effectively be achieved in the majority of chronic stable RTRs using a 6-month bolus intermediate-dose schedule. Winter repletion is associated with an inadequate response in 25(OH)D; however, all patients experience a post-repletion fall towards deficiency in the absence of maintenance supplementation, irrespective of the season of repletion

    Statins and the risk of intracerebral haemorrhage in patients with stroke: systematic review and meta-analysis

    Get PDF
    OBJECTIVE: Whether statins increase the risk of intracerebral haemorrhage (ICH) in patients with a previous stroke remains uncertain. This study addresses the evidence of statin therapy on ICH and other clinical outcomes in patients with previous ischaemic stroke (IS) or ICH. METHODS: A systematic literature review and meta-analysis was performed in conformity with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to assess observational and randomised studies comparing statin therapy with control (placebo or no treatment) in patients with a previous ICH or IS. The risk ratios (RR) for the primary outcome (ICH) and secondary outcomes (IS, any stroke, mortality and function) were pooled using random effects meta-analysis according to stroke subtype. RESULTS: Forty-three studies with a combined total of 317 291 patient-years of follow-up were included. In patients with previous ICH, statins had no significant impact on the pooled RR for recurrent ICH (1.04, 95% CI 0.86 to 1.25; n=23 695); however, statins were associated with significant reductions in mortality (RR 0.49, 95% CI 0.36 to 0.67; n=89 976) and poor functional outcome (RR 0.71, 95% CI 0.67 to 0.75; n=9113). In patients with previous IS, statins were associated with a non-significant increase in ICH (RR 1.36, 95% CI 0.96 to 1.91; n=103 525), but significantly lower risks of recurrent IS (RR 0.74, 95% CI 0.66 to 0.83; n=53 162), any stroke (RR 0.82, 95% CI 0.67 to 0.99; n=55 260), mortality (RR 0.68, 95% CI 0.50 to 0.92; n=74 648) and poor functional outcome (RR 0.83, 95% CI 0.76 to 0.91; n=34 700). CONCLUSIONS: Irrespective of stroke subtype, there were non-significant trends towards future ICH with statins. However, this risk was overshadowed by substantial and significant improvements in mortality and functional outcome among statin users. TRIAL REGISTRATION NUMBER: CRD42017079863

    Remote ischaemic conditioning reduces infarct size in animal in vivo models of ischaemia-reperfusion injury: a systematic review and meta-analysis

    Get PDF
    AIMS: The potential of remote ischaemic conditioning (RIC) to ameliorate myocardial ischaemia-reperfusion injury (IRI) remains controversial. We aimed to analyse the pre-clinical evidence base to ascertain the overall effect and variability of RIC in animal in vivo models of myocardial IRI. Furthermore, we aimed to investigate the impact of different study protocols on the protective utility of RIC in animal models and identify gaps in our understanding of this promising therapeutic strategy. METHODS AND RESULTS: Our primary outcome measure was the difference in mean infarct size between RIC and control groups in in vivo models of myocardial IRI. A systematic review returned 31 reports, from which we made 22 controlled comparisons of remote ischaemic preconditioning (RIPreC) and 21 of remote ischaemic perconditioning and postconditioning (RIPerC/RIPostC) in a pooled random-effects meta-analysis. In total, our analysis includes data from 280 control animals and 373 animals subject to RIC. Overall, RIPreC reduced infarct size as a percentage of area at risk by 22.8% (95% CI 18.8-26.9%), when compared with untreated controls (P < 0.001). Similarly, RIPerC/RIPostC reduced infarct size by 22.2% (95% CI 17.1-25.3%; P < 0.001). Interestingly, we observed significant heterogeneity in effect size (T2 = 92.9% and I2 = 99.4%; P < 0.001) that could not be explained by any of the experimental variables analysed by meta-regression. However, few reports have systematically characterized RIC protocols, and few of the included in vivo studies satisfactorily met study quality requirements, particularly with respect to blinding and randomization. CONCLUSIONS: RIC significantly reduces infarct size in in vivo models of myocardial IRI. Heterogeneity between studies could not be explained by the experimental variables tested, but studies are limited in number and lack consistency in quality and study design. There is therefore a clear need for more well-performed in vivo studies with particular emphasis on detailed characterization of RIC protocols and investigating the potential impact of gender. Finally, more studies investigating the potential benefit of RIC in larger species are required before translation to humans

    Stromal cell-derived factor-1α signals via the endothelium to protect the heart against ischaemia-reperfusion injury

    Get PDF
    AIMS: The chemokine stromal derived factor-1α (SDF-1α) is known to protect the heart acutely from ischaemia-reperfusion injury via its cognate receptor, CXCR4. However, the timing and cellular location of this effect, remains controversial. METHODS AND RESULTS: Wild type male and female mice were subjected to 40 min LAD territory ischaemia in vivo and injected with either saline (control) or SDF-1α prior to 2 h reperfusion. Infarct size as a proportion of area at risk was assessed histologically using Evans blue and triphenyltetrazolium chloride. Our results confirm the cardioprotective effect of exogenous SDF-1α in mouse ischaemia-reperfusion injury and, for the first time, show protection when SDF-1α is delivered just prior to reperfusion, which has important therapeutic implications. The role of cell type was examined using the same in vivo ischaemia-reperfusion protocol in cardiomyocyte- and endothelial-specific CXCR4-null mice, and by Western blot analysis of endothelial cells treated in vitro. These experiments demonstrated that the acute infarct-sparing effect is mediated by endothelial cells, possibly via the signalling kinases Erk1/2 and PI3K/Akt. Unexpectedly, cardiomyocyte-specific deletion of CXCR4 was found to be cardioprotective per se. RNAseq analysis indicated altered expression of the mitochondrial protein co-enzyme Q10b in these mice. CONCLUSIONS: Administration of SDF-1α is cardioprotective when administered prior to reperfusion and may, therefore, have clinical utility. SDF-1α-CXCR4-mediated cardioprotection from ischaemia-reperfusion injury is contingent on the cellular location of CXCR4 activation. Specifically, cardioprotection is mediated by endothelial signalling, while cardiomyocyte-specific deletion of CXCR4 has an infarct-sparing effect per se

    Frequent central nervous system, pachymeningeal and plexus MRI changes in POEMS syndrome

    Get PDF
    OBJECTIVE: Polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, skin changes (POEMS) syndrome is a rare multisystem disease associated with a plasma-cell dyscrasia. Although pachymeningeal involvement has occasionally been described, MRI of the central nervous system (CNS) has not yet been extensively investigated. METHODS: We retrospectively evaluated CNS MRI in Europe’s largest single-center cohort of POEMS syndrome. Of 77 patients who have been formally diagnosed with POEMS, 41 had MRI brain and 29 had MRI spine. A control group of 33 patients with chronic inflammatory demyelinating polyneuropathy (CIDP) was used as this is the major differential diagnosis. Of these CIDP patients, 12 underwent both MRI brain and spine, 7 had solely MRI brain and 14 had MRI spine. RESULTS: In 41 POEMS patients with MRI brain, we identified frequent smooth, diffuse meningeal thickening of the cerebral convexities and falx (n = 29, 71%), of which 4 had meningeal collections. 17 (41%) had vascular abnormalities including white-matter disease, of which 4 had established infarcts. Of 29 patients with MRI spine, 17 (59%) had thickening of the brachial and lumbosacral plexus. Conversely in 19 CIDP patients with MRI brain, none had meningeal thickening (p < 0.0001); however, 8 (42%) had vascular abnormalities (p = 0.85). Of 26 patients with MRI spine, 9 (35%) had brachial or lumbosacral plexus thickening (p = 0.06). CONCLUSIONS: In contrast to CIDP, POEMS patients frequently have pachymeningeal thickening. Vascular abnormalities and plexus thickening were also common but not statistically different to CIDP

    Astrocytes display cell autonomous and diverse early reactive states in familial amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis is a rapidly progressive and fatal disease. Although astrocytes are increasingly recognized contributors to the underlying pathogenesis, the cellular autonomy and uniformity of astrocyte reactive transformation in different genetic forms of amyotrophic lateral sclerosis remain unresolved. Here we systematically examine these issues by using highly enriched and human induced pluripotent stem cell-derived astrocytes from patients with VCP and SOD1 mutations. We show that VCP mutant astrocytes undergo cell-autonomous reactive transformation characterized by increased expression of complement component 3 (C3) in addition to several characteristic gene expression changes. We then demonstrate that isochronic SOD1 mutant astrocytes also undergo a cell-autonomous reactive transformation, but that this is molecularly distinct from VCP mutant astrocytes. This is shown through transcriptome-wide analyses, identifying divergent gene expression profiles and activation of different key transcription factors in SOD1 and VCP mutant human induced pluripotent stem cell-derived astrocytes. Finally, we show functional differences in the basal cytokine secretome between VCP and SOD1 mutant human induced pluripotent stem cell-derived astrocytes. Our data therefore reveal that reactive transformation can occur cell autonomously in human amyotrophic lateral sclerosis astrocytes and with a striking degree of early molecular and functional heterogeneity when comparing different disease-causing mutations. These insights may be important when considering astrocyte reactivity as a putative therapeutic target in familial amyotrophic lateral sclerosis

    Antiphospholipid antibodies and neurological manifestations in acute COVID-19: A single-centre cross-sectional study

    Get PDF
    Background: A high prevalence of antiphospholipid antibodies has been reported in case series of patients with neurological manifestations and COVID-19; however, the pathogenicity of antiphospholipid antibodies in COVID-19 neurology remains unclear. Methods: This single-centre cross-sectional study included 106 adult patients: 30 hospitalised COVID-neurological cases, 47 non-neurological COVID-hospitalised controls, and 29 COVID-non-hospitalised controls, recruited between March and July 2020. We evaluated nine antiphospholipid antibodies: anticardiolipin antibodies [aCL] IgA, IgM, IgG; anti-beta-2 glycoprotein-1 [aβ2GPI] IgA, IgM, IgG; anti-phosphatidylserine/prothrombin [aPS/PT] IgM, IgG; and anti-domain I β2GPI (aD1β2GPI) IgG. Findings: There was a high prevalence of antiphospholipid antibodies in the COVID-neurological (73.3%) and non-neurological COVID-hospitalised controls (76.6%) in contrast to the COVID-non-hospitalised controls (48.2%). aPS/PT IgG titres were significantly higher in the COVID-neurological group compared to both control groups (p < 0.001). Moderate-high titre of aPS/PT IgG was found in 2 out of 3 (67%) patients with acute disseminated encephalomyelitis [ADEM]. aPS/PT IgG titres negatively correlated with oxygen requirement (FiO2 R=-0.15 p = 0.040) and was associated with venous thromboembolism (p = 0.043). In contrast, aCL IgA (p < 0.001) and IgG (p < 0.001) was associated with non-neurological COVID-hospitalised controls compared to the other groups and correlated positively with d-dimer and creatinine but negatively with FiO2. Interpretation: Our findings show that aPS/PT IgG is associated with COVID-19-associated ADEM. In contrast, aCL IgA and IgG are seen much more frequently in non-neurological hospitalised patients with COVID-19. Characterisation of antiphospholipid antibody persistence and potential longitudinal clinical impact are required to guide appropriate management

    Serum and cerebrospinal fluid biomarker profiles in acute SARS-CoV-2-associated neurological syndromes

    Get PDF
    Preliminary pathological and biomarker data suggest that SARS-CoV-2 infection can damage the nervous system. To understand what, where and how damage occurs, we collected serum and CSF from patients with COVID-19 and characterized neurological syndromes involving the PNS and CNS (n = 34). We measured biomarkers of neuronal damage and neuroinflammation, and compared these with non-neurological control groups, which included patients with (n = 94) and without (n = 24) COVID-19. We detected increased concentrations of neurofilament light, a dynamic biomarker of neuronal damage, in the CSF of those with CNS inflammation (encephalitis and acute disseminated encephalomyelitis) [14 800 pg/ml (400, 32 400)], compared to those with encephalopathy [1410 pg/ml (756, 1446)], peripheral syndromes (Guillain–Barré syndrome) [740 pg/ml (507, 881)] and controls [872 pg/ml (654, 1200)]. Serum neurofilament light levels were elevated across patients hospitalized with COVID-19, irrespective of neurological manifestations. There was not the usual close correlation between CSF and serum neurofilament light, suggesting serum neurofilament light elevation in the non-neurological patients may reflect peripheral nerve damage in response to severe illness. We did not find significantly elevated levels of serum neurofilament light in community cases of COVID-19 arguing against significant neurological damage. Glial fibrillary acidic protein, a marker of astrocytic activation, was not elevated in the CSF or serum of any group, suggesting astrocytic activation is not a major mediator of neuronal damage in COVID-19
    corecore