30 research outputs found

    Evolution of Near-Sun Solar Wind Turbulence

    Full text link
    This paper presents a preliminary analysis of the turbulence spectrum of the solar wind in the near-Sun region R < 50 Rs, obtained from interplanetary scintillation measurements with the Ooty Radio Telescope at 327 MHz. The results clearly show that the scintillation is dominated by density irregularities of size about 100 - 500 km. The scintillation at the small-scale side of the spectrum, although significantly less in magnitude, has a flatter spectrum than the larger-scale dominant part. Furthermore, the spectral power contained in the flatter portion rapidly increases closer to the Sun. These results on the turbulence spectrum for R < 50 Rs quantify the evidence for radial evolution of the small-scale fluctuations (</= 50 km) generated by Alfven waves.Comment: 8 pages, 5 figures, To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    Highly active and stable bimetallic IR/Fe-USY catalysts for direct and NO-assisted N20 decomposition

    No full text
    The current research investigated N2O decompositions over the catalysts Ir/Fe-USY, Fe-USY and Ir-USY under various conditions, and found that a trace amount of iridium (0.1 wt%) incorporated into Fe-USY significantly enhanced N2O decomposition activity. The decomposition of N2O over this catalyst (Ir/Fe-USY-0.1%) was also partly assisted by NO present in the gas mixture, in contrast to the negative effect of NO over noble metal catalysts. Moreover, Ir/Fe-USY-0.1% can decompose more than 90% at 400 °C (i.e. the normal exhaust temperature) under simulated conditions of a typical nitric acid plant, e.g. 5000 ppm N2O, 5% O2, 700 ppm NO and 2% H2O in balance He, and such an activity can be kept for over 110 h under these strict conditions. The excellent properties of bimetallic Ir/Fe-USY-0.1% catalyst are presumably related to the good dispersion of Fe and Ir on the zeolite framework, the formation of framework Al–O–Fe species and the electronic synergy between the Ir and Fe sites. The reaction mechanism for N2O decomposition has been further discussed on the temperature-programmed desorption profiles of O2, N2 and NO2
    corecore