11 research outputs found

    A pathway of neuregulin-induced activation of cofilin-phosphatase Slingshot and cofilin in lamellipodia

    Get PDF
    Cofilin mediates lamellipodium extension and polarized cell migration by stimulating actin filament dynamics at the leading edge of migrating cells. Cofilin is inactivated by phosphorylation at Ser-3 and reactivated by cofilin-phosphatase Slingshot-1L (SSH1L). Little is known of signaling mechanisms of cofilin activation and how this activation is spatially regulated. Here, we show that cofilin-phosphatase activity of SSH1L increases ∼10-fold by association with actin filaments, which indicates that actin assembly at the leading edge per se triggers local activation of SSH1L and thereby stimulates cofilin-mediated actin turnover in lamellipodia. We also provide evidence that 14-3-3 proteins inhibit SSH1L activity, dependent on the phosphorylation of Ser-937 and Ser-978 of SSH1L. Stimulation of cells with neuregulin-1β induced Ser-978 dephosphorylation, translocation of SSH1L onto F-actin–rich lamellipodia, and cofilin dephosphorylation. These findings suggest that SSH1L is locally activated by translocation to and association with F-actin in lamellipodia in response to neuregulin-1β and 14-3-3 proteins negatively regulate SSH1L activity by sequestering it in the cytoplasm

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    A possible role of neurotensin in NANC relaxation of longitudinal muscle of the jejunum and ileum of Wistar rats

    Full text link
    1. The mediators of nonadrenergic, noncholinergic (NANC) relaxation in longitudinal muscle of the jejunum and ileum of Wistar rats were examined in vitro. 2. Treatment of the jejunal and ileal segments with α-chymotrypsin resulted in decreases in the NANC relaxations induced by electrical field stimulation (EFS) by about one half. 3. The NANC relaxations were also decreased by about one half after the segments had been desensitized to neurotensin. A neurotensin receptor antagonist, SR48692 (10 μM) inhibited the NANC relaxation by 56 and 34% in the jejunal and ileal segments, respectively. 4. An inhibitor of small conductance Ca(2+)-activated K(+) channel (SK channel), apamin (100 nM) also inhibited the NANC relaxation by 83 and 63%, respectively. Exogenous neurotensin-induced relaxations of the two segments were abolished by apamin. 5. In the ileal segments, N(G)-nitro-L-arginine (L-NOARG, 100 μM), inhibited the NANC relaxation by 43%. L-NOARG, but not apamin, further inhibited the relaxation which persisted after the desensitization to neurotensin. Apamin with SR48692 inhibited the relaxation only to the same extent as apamin alone. 6. EFS induced inhibitory junction potentials (i.j.ps) in the longitudinal muscle cells of the ileum. I.j.ps consisted of a rapid and a delayed phase. L-NOARG significantly inhibited only the delayed phase. 7. EFS induced only a rapid i.j.ps in the jejunum. SR48692 and apamin inhibited the i.j.ps. 8. These findings suggest that neurotensin and unknown substance(s) mediate NANC relaxation via SK channels in the jejunum of Wistar rats, and that neurotensin via SK channels and nitric oxide not via SK channels separately mediate the relaxation in the ileum
    corecore