144 research outputs found

    Arbitrary cross-section SEM-cathodoluminescence imaging of growth sectors and local carrier concentrations within micro-sampled semiconductor nanorods

    Get PDF
    Future one-dimensional electronics require single-crystalline semiconductor free-standing nanorods grown with uniform electrical properties. However, this is currently unrealistic as each crystallographic plane of a nanorod grows at unique incorporation rates of environmental dopants, which forms axial and lateral growth sectors with different carrier concentrations. Here we propose a series of techniques that micro-sample a free-standing nanorod of interest, fabricate its arbitrary cross-sections by controlling focused ion beam incidence orientation, and visualize its internal carrier concentration map. ZnO nanorods are grown by selective area homoepitaxy in precursor aqueous solution, each of which has a (0001):+c top-plane and six {1–100}:m side-planes. Near-band-edge cathodoluminescence nanospectroscopy evaluates carrier concentration map within a nanorod at high spatial resolution (60 nm) and high sensitivity. It also visualizes +c and m growth sectors at arbitrary nanorod cross-section and history of local transient growth events within each growth sector. Our technique paves the way for well-defined bottom-up nanoelectronics

    Feedback Heating by Cosmic Rays in Clusters of Galaxies

    Full text link
    Recent observations show that the cooling flows in the central regions of galaxy clusters are highly suppressed. Observed AGN-induced cavities/bubbles are a leading candidate for suppressing cooling, usually via some form of mechanical heating. At the same time, observed X-ray cavities and synchrotron emission point toward a significant non-thermal particle population. Previous studies have focused on the dynamical effects of cosmic-ray pressure support, but none have built successful models in which cosmic-ray heating is significant. Here we investigate a new model of AGN heating, in which the intracluster medium is efficiently heated by cosmic-rays, which are injected into the ICM through diffusion or the shredding of the bubbles by Rayleigh-Taylor or Kelvin-Helmholtz instabilities. We include thermal conduction as well. Using numerical simulations, we show that the cooling catastrophe is efficiently suppressed. The cluster quickly relaxes to a quasi-equilibrium state with a highly reduced accretion rate and temperature and density profiles which match observations. Unlike the conduction-only case, no fine-tuning of the Spitzer conduction suppression factor f is needed. The cosmic ray pressure, P_c/P_g <~ 0.1 and dP_c/dr <~ 0.1 \rho g, is well within observational bounds. Cosmic ray heating is a very attractive alternative to mechanical heating, and may become particularly compelling if GLAST detects the gamma-ray signature of cosmic-rays in clusters.Comment: Revised version accepted for publication in MNRAS. Significantly expanded discussion and new simulations exploring parameter space/model robustness; conclusions unchange

    Altered calcium influx of peripheral Th2 cells in pediatric Crohn’s disease: infliximab may normalize activation patterns

    Get PDF
    OBJECTIVE: Crohn's disease is a chronic inflammation of the gastrointestinal tract with an abnormal immune phenotype. We investigated how intracellular calcium kinetics of Th1 and Th2 lymphocytes alter upon specific inhibition of Kv1.3 and IKCa1 channels in pediatric Crohn's disease. STUDY DESIGN: Blood was taken from 12 healthy and 29 Crohn's disease children. Of those, 6 were switched to infliximab and re-sampled after the 4th infliximab treatment. Intracellular calcium levels were monitored using flow cytometry in the presence or absence of specific inhibitors of Kv1.3 and IKCa1 potassium channels. RESULTS: In Crohn's disease treated with standard therapy, calcium response during activation was higher than normal in Th2 cells. This was normalized in vitro by inhibition of Kv1.3 or IKCa1 potassium channels. After the switch to infliximab, potassium channel function and expression in Th2 lymphocytes were comparable to those in Th1 cells. CONCLUSION: These results may indicate that potassium channels are potential immune modulatory targets in Crohn's disease

    The effect of cluster magnetic field on the Sunyaev Zeldovich power spectrum

    Full text link
    Precision measurements of the Sunyaev Zeldovich (SZ) effect in upcoming blank sky surveys require theoretical understanding of all physical processes with \ga 10% effects on the SZ power spectrum. We show that, observed cluster magnetic field could reduce the SZ power spectrum by 20\sim 20% at l4000l\sim 4000, where the SZ power spectrum will be precisely measured by the Sunyaev Zeldovich array (SZA) and the Atacama cosmology telescope (ACT). At smaller scale, this effect is larger and could reach a factor of several. Such effect must be considered for an unbiased interpretation of the SZ data. Though the magnetic effect on the SZ power spectrum is very similar to that of radiative cooling, it is measurable by multi-band CMB polarization measurement.Comment: 8 pages, 7 figures. Revised version accepted by MNRA

    A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion

    Get PDF
    Cancer-associated fibroblasts (CAFs) promote tumour invasion and metastasis. We show that CAFs exert a physical force on cancer cells that enables their collective invasion. Force transmission is mediated by a heterophilic adhesion involving N-cadherin at the CAF membrane and E-cadherin at the cancer cell membrane. This adhesion is mechanically active; when subjected to force it triggers β-catenin recruitment and adhesion reinforcement dependent on α-catenin/vinculin interaction. Impairment of E-cadherin/N-cadherin adhesion abrogates the ability of CAFs to guide collective cell migration and blocks cancer cell invasion. N-cadherin also mediates repolarization of the CAFs away from the cancer cells. In parallel, nectins and afadin are recruited to the cancer cell/CAF interface and CAF repolarization is afadin dependent. Heterotypic junctions between CAFs and cancer cells are observed in patient-derived material. Together, our findings show that a mechanically active heterophilic adhesion between CAFs and cancer cells enables cooperative tumour invasion

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore