145 research outputs found

    Comparative RNA‐Seq transcriptome analyses reveal distinct metabolic pathways in diabetic nerve and kidney disease

    Full text link
    Treating insulin resistance with pioglitazone normalizes renal function and improves small nerve fibre function and architecture; however, it does not affect large myelinated nerve fibre function in mouse models of type 2 diabetes (T2DM), indicating that pioglitazone affects the body in a tissue‐specific manner. To identify distinct molecular pathways regulating diabetic peripheral neuropathy (DPN) and nephropathy (DN), as well those affected by pioglitazone, we assessed DPN and DN gene transcript expression in control and diabetic mice with or without pioglitazone treatment. Differential expression analysis and self‐organizing maps were then used in parallel to analyse transcriptome data. Differential expression analysis showed that gene expression promoting cell death and the inflammatory response was reversed in the kidney glomeruli but unchanged or exacerbated in sciatic nerve by pioglitazone. Self‐organizing map analysis revealed that mitochondrial dysfunction was normalized in kidney and nerve by treatment; however, conserved pathways were opposite in their directionality of regulation. Collectively, our data suggest inflammation may drive large fibre dysfunction, while mitochondrial dysfunction may drive small fibre dysfunction in T2DM. Moreover, targeting both of these pathways is likely to improve DN. This study supports growing evidence that systemic metabolic changes in T2DM are associated with distinct tissue‐specific metabolic reprogramming in kidney and nerve and that these changes play a critical role in DN and small fibre DPN pathogenesis. These data also highlight the potential dangers of a ‘one size fits all’ approach to T2DM therapeutics, as the same drug may simultaneously alleviate one complication while exacerbating another.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138206/1/jcmm13136.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138206/2/jcmm13136_am.pd

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Spectroscopic and biochemical correlations during the course of human lens aging

    Get PDF
    BACKGROUND: With age, the human lens accumulates variety of substances that absorbs and fluorescence, which explains the color of yellow, brunescent and nigrescent cataract in terms of aging. The aim of this study was to assess lens fluorophores with properties comparable to those of advanced glycated end products (AGEs) in relation to age in human lenses. These fluorescent compounds are believed to be involved in the development of cataract. METHODS: Spectroscopic (UV-Vis-NIR) and fluorescence photography (CCD-Digital based image analysis) studies were carried out in randomly selected intact human lenses (2–85 years). AGE-like fluorophores were also measured in water soluble and insoluble (alkali soluble) fractions of human lenses (20–80 years). RESULTS: Our experimental findings suggest that there was a progressive shift in the absorbance characteristic of intact lens in the range of λ(210 nm)-λ(470 nm). A relative increase in the absorptivity at λ((511–520 nm)), with age, was also observed. In addition, the ratio of absorptivity at λ((511–520 nm)) versus the maximum absorbance recorded at blue-end cut-off (210–470 nm) was also found to increase, with age. The fluorescent intensity in the intact lens at both UV-B (λ(Ex312 nm)) and UV-A (λ(Ex365 nm)) were found to be positively correlated (r(2 )= 0.91 & 0.94, respectively; Confidence interval 95%) upto 50 years of age. In addition, a concomitant changes in AGE- like fluorophores were also observed in the processed lens samples (soluble and insoluble fractions) along the age. A significant increase in the concentration of AGE- like fluorophores, both in intact and processed lens was observed during the period of 40 – 50 years. CONCLUSION: Based on the present investigation, it was concluded that significant changes do occur in the AGE-like fluorophores of human lenses during the period of 40–50 years

    Muscle protein metabolism in neonatal alloxan-administered rats: effects of continuous and intermittent swimming training

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to examine the effects of intermittent and continuous swimming training on muscle protein metabolism in neonatal alloxan-administered rats.</p> <p>Methods</p> <p>Wistar rats were used and divided into six groups: sedentary alloxan (SA), sedentary control (SC), continuous trained alloxan (CA), intermittent trained alloxan (IA), continuous trained control (CC) and intermittent trained control (IC). Alloxan (250 mg/kg body weight) was injected into newborn rats at 6 days of age. The continuous training protocol consisted of 12 weeks of swimming training in individual cylinder tanks while supporting a load that was 5% of body weight; uninterrupted swimming for 1 h/day, five days a week. The intermittent training protocol consisted of 12 weeks of swimming training in individual cylinder tanks while supporting a load that was 15% of body weight; 30 s of activity interrupted by 30 s of rest for a total of 20 min/day, five days a week.</p> <p>Results</p> <p>At 28 days, the alloxan animals displayed higher glycemia after glucose overload than the control animals. No differences in insulinemia among the groups were detected. At 120 days, no differences in serum albumin and total protein among the groups were observed. Compared to the other groups, DNA concentrations were higher in the alloxan animals that were subjected to continuous training, whereas the DNA/protein ratio was higher in the alloxan animals that were subjected to intermittent training.</p> <p>Conclusion</p> <p>It was concluded that continuous and intermittent training sessions were effective in altering muscle growth by hyperplasia and hypertrophy, respectively, in alloxan-administered animals.</p

    Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy

    Get PDF
    Diabetes is a recognized risk factor for cardiovascular diseases and heart failure. Diabetic cardiovascular dysfunction also underscores the development of diabetic retinopathy, nephropathy and neuropathy. Despite the broad availability of antidiabetic therapy, glycaemic control still remains a major challenge in the management of diabetic patients. Hyperglycaemia triggers formation of advanced glycosylation end products(AGEs), activates protein kinase C, enhances polyol pathway, glucose autoxidation, which coupled with elevated levels of free fatty acids, and leptin have been implicated in increased generation of superoxide anion by mitochondria, NADPH oxidases and xanthine oxidoreductase in diabetic vasculature and myocardium. Superoxide anion interacts with nitric oxide forming the potent toxin peroxynitrite via diffusion limited reaction, which in concert with other oxidants triggers activation of stress kinases, endoplasmic reticulum stress, mitochondrial and poly(ADP-ribose) polymerase 1-dependent cell death, dysregulates autophagy/mitophagy, inactivates key proteins involved in myocardial calcium handling/contractility and antioxidant defense, activates matrix metalloproteinases and redox-dependent pro-inflammatory transcription factors (e.g. nuclear factor kappaB) promoting inflammation, AGEs formation, eventually culminating in myocardial dysfunction, remodeling and heart failure. Understanding the complex interplay of oxidative/nitrosative stress with pro-inflammatory, metabolic and cell death pathways is critical to devise novel targeted therapies for diabetic cardiomyopathy, which will be overviewed in this brief synopsis. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases

    The effect of peri-conception hyperglycaemia and the involvement of the hexosamine biosynthesis pathway in mediating oocyte and embryo developmental competence

    Get PDF
    The environment that the oocyte is exposed to during the peri-conception period can have a significant impact on oocyte developmental competence (the ability of the oocyte to support fertilisation and subsequent embryo development) and the long-term health of the resulting offspring. This is particularly true for maternal hyperglycaemia. While maternal hyperglycaemia during early pregnancy through term development has been extensively studied, the effects on the oocyte itself, and the underlying mechanisms, remain largely unknown. There is increasing evidence, however, for the role of the fuel-sensing hexosamine biosynthesis pathway in mediating the effects of hyperglycaemia in many different cell types. In this review, we will focus on the reproductive consequences of maternal hyperglycaemia during the peri-conceptual period and the role of the hexosamine pathway in mediating these processes.Laura A. Frank, Melanie L. Sutton-McDowall, Robert B. Gilchrist, and Jeremy G. Thompso

    Determining crystal structures through crowdsourcing and coursework

    Get PDF
    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality
    corecore