26 research outputs found
Spatial and temporal variability in the potential of river water biofilms to degrade p-nitrophenol
© 2016 Elsevier Ltd In order to predict the fate of chemicals in the environment, a range of regulatory tests are performed with microbial inocula collected from environmental compartments to investigate the potential for biodegradation. The abundance and distribution of microbes in the environment is affected by a range of variables, hence diversity and biomass of inocula used in biodegradation tests can be highly variable in space and time. The use of artificial or natural biofilms in regulatory tests could enable more consistent microbial communities be used as inocula, in order to increase test consistency. We investigated spatial and temporal variation in composition, biomass and chemical biodegradation potential of bacterial biofilms formed in river water. Sampling time and sampling location impacted the capacity of biofilms to degrade p-nitrophenol (PNP). Biofilm bacterial community structure varied across sampling times, but was not affected by sampling location. Degradation of PNP was associated with increased relative abundance of Pseudomonas syringae. Partitioning of the bacterial metacommunity into core and satellite taxa revealed that the P. syringae could be either a satellite or core member of the community across sampling times, but this had no impact on PNP degradation. Quantitative PCR analysis of the pnpA gene showed that it was present in all samples irrespective of their ability to degrade PNP. River biofilms showed seasonal variation in biomass, microbial community composition and PNP biodegradation potential, which resulted in inconsistent biodegradation test results. We discuss the results in the context of the mechanisms underlying variation in regulatory chemical degradation tests
Incorporation of metabolic activation potentiates cyclophosphamide-induced DNA damage response in isogenic DT40 mutant cells
Elucidating the DNA repair pathways that are activated in the presence of genotoxic agents is critical to understand their modes of action. Although the DT40 cell-based DNA damage response (DDR) assay provides rapid and sensitive results, the assay cannot be used on genotoxic compounds that require metabolic activation to be reactive. Here, we applied the metabolic activation system to a DDR and micronucleus (MN) assays in DT40 cells. Cyclophosphamide (CP), a well-known cross-linking agent requiring metabolic activation, was preincubated with liver S9 fractions. When DT40 cells and mutant cells were exposed to the preactivated CP, CP caused increased cytotoxicity in FANC-, RAD9-, REV3- and RAD18-mutant cells compared to isogenic wild-type cells. We then performed a MN assay on DT40 cells treated with preactivated CP. An increase in the MN was observed in REV3- and FANC-mutant cells at lower concentrations of activated CP than in the parental DT40 cells. These results demonstrated that the incorporation of metabolic preactivation system using S9 fractions significantly potentiates DDR caused by CP in DT40 cells and their mutants. In addition, our data suggest that the metabolic preactivation system for DDR and MN assays has a potential to increase the relevance of this assay to screening various compounds for potential genotoxicity