14 research outputs found
Age constraints for the Pre-Uralide-Timanide orogenic event inferred from the study of detrital zircons
[No abstract available
Age constraints for the Pre-Uralide-Timanide orogenic event inferred from the study of detrital zircons
[No abstract available
First results of U - Pb dating of detrital zircons from basal horizons of Uralides (Polar Urals)
[No abstract available
First U-Pb datings of detrital zircons from middle and upper paleozoic sandstones of the Polar Urals: Testing the regional tectonic models
[No abstract available
First U-Pb datings of detrital zircons from middle and upper paleozoic sandstones of the Polar Urals: Testing the regional tectonic models
[No abstract available
First results of U - Pb dating of detrital zircons from basal horizons of Uralides (Polar Urals)
[No abstract available
First results of U/Pb dating of detrital zircons from Early Paleozoic and Devonian sandstones of the Baltic-Ladoga region (south Ladoga Area)
The first results of U/Pb isotopic dating (LA ICP MS) of detrital zircons from sands from the Middle Cambrian Sablinka Formation, Upper Cambrian Ladoga Formation, Low Ordovician Tosna Formation, and calcareous sands from Syas' Formation (Sargaevskii horizon of the Upper Frasnian) from Baltica-Ladoga Glint (BLG) of the Southern Ladoga area are presented. The obtained ages of detrital zircons span the intervals 492.7 ± 5.1-3196.4 ± 5.1 Ma (Sablino Formation); 577.9 ± 7-2972.6 ± 13.4 Ma (Ladoga Formation); 509.4 ± 8.5-3247.6 ± 10.1 Ma (Tosna Formation); 451.1 ± 14.7-2442.2 ± 6.9 Ma (Syas' Formation). A comparison of the obtained isotopic ages of detrital zircons to ages of crystalline complexes composing the Kola-Karelian, Svecofennian, and Sveconorwegian domains of Baltic Shield and Pre-Uralian-Timanian structures of Subpolar and Polar Urals and basement of Pechora Basin was carried out. It is proposed that the Middle Paleozoic sedimentary basin accumulated Upper Frasnian rocks of Syas' Formation. The basin ranged northward from the present-day BLG and occupied the eastern part of the Baltic Shield. © 2011 Pleiades Publishing, Ltd
The first results of U/Pb dating and isotope geochemical studies of detrital zircons from the neoproterozoic sandstones of the Southern Timan (Djejim-Parma Hill)
This report presents the first results of U/Pb dating, isotope-geochemical, and geochemical studies of detrital zircons from the Neoproterozoic clastic rocks of the Southern Timan. Sixty-one zircon grains were treated, including 51 from red-colored sandstones and 10 grains from aleurosandstones of the Djejim Formation of the southern Chetlas-Djejim zone (Djejim-Parma Hill). It was found that the U/Pb-ages of zircons from the rocks of the Djejim Formation, varied from ∼2.97 to ∼1.20 Ga. The studies of microelement composition in 47 grains (of 61 U/Pb isotope ages obtained), on the basis of several empirical regularities found formerly, show that the detrital zircons had originated from "granites" (22 grains), "diorites" (12 grains), or their volcanic analogues, or more rarely, from "syenites" and "basites" (5 and 8 grains, respectively). The Lu/Hf isotope system of zircons allows one to estimate the model ages (T DM C ) of the substrate magmatic rocks being parental to the zircons considered. In particular, Archean zircons are characterized by ∼2.84-3.36 Ga model ages of magmaforming rocks. For some of the grains, their model ages (∼2.84 Ga) are close to those of zircons as such (∼2.7-2.8 Ga), which points to the juvenile character of the substrate from which the parent magma of the zircons treated was fused. For Proterozoic (to Middle Riphean) zircons, the Lu/Hf isotope system allows one to estimate the model age of the substrate of their parental rocks within ∼2.00-3.36 Ga, which shows that these rocks were formed under the recycling of the Archean and Early-Proterozoic crust. The ages obtained for detrital zircons, as well as model ages of the substrate of the corresponding parental magmatic rocks, are quite comparable to the age of crystalline complexes of the ancient framework of the East European Platform (EEP), formed in the course of the Archean, Early-Proterozoic, and Early-Middle Riphean tectonomagmatic events. This permits us to conclude that the Neoproterozoic detrital complexes of the Timan were formed owing to the erosion of earlier Neoproterozoic and Early Precambrian complexes constituting the Neoproterozoic Baltica continent, presenting complexes of the passive margin of this continent. A variety of ages of detrital zircons from sandstones and aleurosandstones from the Djejim Formation of Djejim-Parma Hill, and of the estimates of magmatic rocks parental to these zircons, may be characterized as a Baltic Provenance signal. © 2010 Pleiades Publishing, Ltd
First results of U/Pb dating of detrital zircons from Early Paleozoic and Devonian sandstones of the Baltic-Ladoga region (south Ladoga Area)
The first results of U/Pb isotopic dating (LA ICP MS) of detrital zircons from sands from the Middle Cambrian Sablinka Formation, Upper Cambrian Ladoga Formation, Low Ordovician Tosna Formation, and calcareous sands from Syas' Formation (Sargaevskii horizon of the Upper Frasnian) from Baltica-Ladoga Glint (BLG) of the Southern Ladoga area are presented. The obtained ages of detrital zircons span the intervals 492.7 ± 5.1-3196.4 ± 5.1 Ma (Sablino Formation); 577.9 ± 7-2972.6 ± 13.4 Ma (Ladoga Formation); 509.4 ± 8.5-3247.6 ± 10.1 Ma (Tosna Formation); 451.1 ± 14.7-2442.2 ± 6.9 Ma (Syas' Formation). A comparison of the obtained isotopic ages of detrital zircons to ages of crystalline complexes composing the Kola-Karelian, Svecofennian, and Sveconorwegian domains of Baltic Shield and Pre-Uralian-Timanian structures of Subpolar and Polar Urals and basement of Pechora Basin was carried out. It is proposed that the Middle Paleozoic sedimentary basin accumulated Upper Frasnian rocks of Syas' Formation. The basin ranged northward from the present-day BLG and occupied the eastern part of the Baltic Shield. © 2011 Pleiades Publishing, Ltd