50 research outputs found

    A common variant near TGFBR3 is associated with primary open angle glaucoma

    Get PDF
    Primary open angle glaucoma (POAG), a major cause of blindness worldwide, is a complex disease with a significant genetic contribution. We performed Exome Array (Illumina) analysis on 3504 POAG cases and 9746 controls with replication of the most significant findings in 9173 POAG cases and 26 780 controls across 18 collections of Asian, African and European descent. Apart from confirming strong evidence of association at CDKN2B-AS1 (rs2157719 [G], odds ratio [OR] = 0.71, P = 2.81 × 10−33), we observed one SNP showing significant association to POAG (CDC7–TGFBR3 rs1192415, ORG-allele = 1.13, Pmeta = 1.60 × 10−8). This particular SNP has previously been shown to be strongly associated with optic disc area and vertical cup-to-disc ratio, which are regarded as glaucoma-related quantitative traits. Our study now extends this by directly implicating it in POAG disease pathogenesis

    (Anti-)deuteron production in pp collisions at 1as=13TeV

    Get PDF
    The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at s=13 TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity (d Nch/ d \u3b7 3c 26) as measured in p\u2013Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p\u2013Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and statistical hadronisation models (SHM)

    Long-range Angular Correlations On The Near And Away Side In P-pb Collisions At √snn=5.02 Tev

    Get PDF
    7191/Mar294

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Oxidized proteins and their contribution to redox homeostasis

    Full text link
    Proteins are major target for radicals and other oxidants when these are formed in both intra- and extracellular environments in vivo. Formation of lesions on proteins may be highly sensitive protein-based biomarkers for oxidative damage in mammalian systems. Oxidized proteins are often functionally inactive and their unfolding is associated with enhanced susceptibility to proteinases. ROS scavenging activities of intact proteins are weaker than those of misfolded proteins or equivalent concentrations of their constituent amino acids. Protein oxidation and enhanced proteolytic degradation, therefore, have been suggested to cause a net increase in ROS scavenging capacity. However, certain oxidized proteins are poorly handled by cells, and together with possible alterations in the rate of production of oxidized proteins, may contribute to the observed accumulation and damaging actions of oxidized proteins during ageing and in pathologies such as diabetes, arteriosclerosis and neurodegenerative diseases. Protein oxidation may play a controlling role in cellular remodelling and cell growth. There is some evidence that antioxidant supplementation may protect against protein oxidation, but additional controlled studies of antioxidant intake to evaluate the significance of dietary/pharmacological antioxidants in preventing physiological/pathological oxidative changes are needed

    Protective effects of Mangifera indica L. extract, mangiferin and selected antioxidants against TPA-induced biomolecules oxidation and peritoneal macrophage activation in mice

    Full text link
    We compared the protective abilities of Mangifera indica L. stem bark extract (Vimang) 50-250 mgkg(-1), mangiferin 50 mgkg(-1), vitamin C 100 mgkg(-1), vitamin E 100 mgkg(-1)and beta -carotene 50 mgkg(-1)against the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced oxidative damage in serum, liver, brain as well as in the hyper-production of reactive oxygen species (ROS) by peritoneal macrophages. The treatment of mice with Vimang, vitamin E and mangiferin reduced the TPA-induced production of ROS by the peritoneal macrophages by 70, 17 and 44%, respectively. Similarly, the H(2)O(2)levels were reduced by 55-73, 37 and 40%, respectively, when compared to the control group. The TPA-induced sulfhydryl group loss in liver homogenates was attenuated by all the tested antioxidants. Vimang, mangiferin, vitamin C plus E and beta -carotene decreased TPA-induced DNA fragmentation by 46-52, 35, 42 and 17%, respectively, in hepatic tissues, and by 29-34, 22, 41 and 17%, in brain tissues. Similar results were observed in respect to lipid peroxidation in serum, in hepatic mitochondria and microsomes, and in brain homogenate supernatants. Vimang exhibited a dose-dependent inhibition of TPA-induced biomolecule oxidation and of H(2)O(2)production by peritoneal macrophages. Even if Vimang, as well as other antioxidants, provided significant protection against TPA-induced oxidative damage, the former lead to better protection when compared with the other antioxidants at the used doses. Furthermore, the results indicated that Vimang is bioavailable for some vital target organs, including liver and brain tissues, peritoneal exudate cells and serum. Therefore, we conclude that Vimang could be useful to prevent the production of ROS and the oxidative tissue damages in vivo

    Protective effect of Mangifera indica L. extract (Vimang) on the injury associated with hepatic ischaemia reperfusion

    Full text link
    The effect of Mangifera indica L. extract (Vimang\uae) on treatment of injury associated with hepatic ischaemia/reperfusion was tested. Vimang\uae protects from the oxidative damage induced by oxygen-based free radicals as shown in several in vitro test systems conducted. The ability of Vimang\uae to reduce liver damage was investigated in rats undergoing right-lobe blood flow occlusion for 45 min followed by 45 min of reperfusion. The ischaemia/reperfusion model leads to an increase of transaminase (ALT and AST), membrane lipid peroxidation, tissue neutrophil infiltration, DNA fragmentation, loss of protein -SH groups, cytosolic Ca2+ overload and a decrease of catalase activity. Oral administration of Vimang\uae (50, 110 and 250 mg/kg, b.w.) 7 days before reperfusion, reduced transaminase levels and DNA fragmentation in a dose dependent manner (p < 0.05). Vimang\uae also restored the cytosolic Ca2+ levels and inhibited polymorphonuclear migration at a dose of 250 mg/kg b.w., improved the oxidation of total and non protein sulfhydryl groups and prevented modification in catalase activity, uric acid and lipid peroxidation markers (p < 0.05). These data suggest that Vimang\uae could be a useful new natural drug for preventing oxidative damage during hepatic injury associated with free radical generation. Copyrigh

    Effects of ozone oxidative preconditioning on nitric oxide generation and cellular redox balance in a rat model of hepatic ischaemia-reperfusion

    Full text link
    Background: Many studies indicate that oxygen free-radical formation after reoxygenation of liver may initiate the cascade of hepatocellular injury. It has been demonstrated that controlled ozone administration may promote an oxidative preconditioning or adaptation to oxidative stress, preventing the damage induced by reactive oxygen species and protecting against liver ischaemia-reperfusion (I/R) injury. Aims: In the present study, the effects of ozone oxidative preconditioning (OzoneOP) on nitric oxide (NO) generation and the cellular redox balance have been studied. Methods: Six groups of rats were classified as follows: (1) sham-operated; (2) sham-operated + L-NAME (N\u3c9-nitro-L-arginine methyl ester); (3) I/R (ischaemia 90 min-reperfusion 90 min); (4) OzoneOP + I/R; (5) OzoneOP + L-NAME + I/R; and (6) L-NAME + I/R. The following parameters were measured: plasma transaminases (aspartate aminotransferase, alanine aminotransferase) as an index of hepatocellular injury; in homogenates of hepatic tissue: nitrate/nitrite as an index of NO production; superoxide dismutase (SOD), catalase (CAT) and glutathione levels as markers of endogenous antioxidant system; and finally malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) and total hydroperoxides (TH) as indicators of oxidative stress. Results: A correspondence between liver damage and the increase of NO, CAT, TH, glutathione and MDA + 4-HDA concentrations were observed just as a decrease of SOD activity. OzoneOP prevented and attenuated hepatic damage in I/R and OzoneOP + L-NAME + I/R, respectively, in close relation with the above-mentioned parameters. Conclusions: These results show that OzoneOP protected against liver I/R injury through mechanisms that promote a regulation of endogenous NO concentrations and maintenance of cellular redox balance. Ozone treatment may have important clinical implications, particularly in view of the increasing hepatic transplantation programs. Copyrigh
    corecore