7 research outputs found
Self-induced and induced transparencies of two-dimensional and three- dimensional superlattices
The phenomenon of transparency in two-dimensional and three-dimensional
superlattices is analyzed on the basis of the Boltzmann equation with a
collision term encompassing three distinct scattering mechanisms (elastic,
inelastic and electron-electron) in terms of three corresponding distinct
relaxation times. On this basis, we show that electron heating in the plane
perpendicular to the current direction drastically changes the conditions for
the occurrence of self-induced transparency in the superlattice. In particular,
it leads to an additional modulation of the current amplitudes excited by an
applied biharmonic electric field with harmonic components polarized in
orthogonal directions. Furthermore, we show that self-induced transparency and
dynamic localization are different phenomena with different physical origins,
displaced in time from each other, and, in general, they arise at different
electric fields.Comment: to appear in Physical Review
Miniband-related 1.4–1.8 μm luminescence of Ge/Si quantum dot superlattices
The luminescence properties of highly strained, Sb-doped Ge/Si multi-layer heterostructures with incorporated Ge quantum dots (QDs) are studied. Calculations of the electronic band structure and luminescence measurements prove the existence of an electron miniband within the columns of the QDs. Miniband formation results in a conversion of the indirect to a quasi-direct excitons takes place. The optical transitions between electron states within the miniband and hole states within QDs are responsible for an intense luminescence in the 1.4–1.8 µm range, which is maintained up to room temperature. At 300 K, a light emitting diode based on such Ge/Si QD superlattices demonstrates an external quantum efficiency of 0.04% at a wavelength of 1.55 µm