34 research outputs found
Towards device-size atomistic models of amorphous silicon
The atomic structure of amorphous materials is believed to be well described
by the continuous random network model. We present an algorithm for the
generation of large, high-quality continuous random networks. The algorithm is
a variation of the "sillium" approach introduced by Wooten, Winer, and Weaire.
By employing local relaxation techniques, local atomic rearrangements can be
tried that scale almost independently of system size. This scaling property of
the algorithm paves the way for the generation of realistic device-size atomic
networks.Comment: 7 pages, 3 figure
First-Principles Studies of Hydrogenated Si(111)--77
The relaxed geometries and electronic properties of the hydrogenated phases
of the Si(111)-77 surface are studied using first-principles molecular
dynamics. A monohydride phase, with one H per dangling bond adsorbed on the
bare surface is found to be energetically favorable. Another phase where 43
hydrogens saturate the dangling bonds created by the removal of the adatoms
from the clean surface is found to be nearly equivalent energetically.
Experimental STM and differential reflectance characteristics of the
hydrogenated surfaces agree well with the calculated features.Comment: REVTEX manuscript with 3 postscript figures, all included in uu file.
Also available at http://www.phy.ohiou.edu/~ulloa/ulloa.htm
Systematic generation of finite-range atomic basis sets for linear-scaling calculations
Basis sets of atomic orbitals are very efficient for density functional
calculations but lack a systematic variational convergence.
We present a variational method to optimize numerical atomic orbitals using a
single parameter to control their range.
The efficiency of the basis generation scheme is tested and compared with
other schemes for multiple zeta basis sets.
The scheme shows to be comparable in quality to other widely used schemes
albeit offering better performance for linear-scaling computations
Current rectification by simple molecular quantum dots: an ab-initio study
We calculate a current rectification by molecules containing a conjugated
molecular group sandwiched between two saturated (insulating) molecular groups
of different length (molecular quantum dot) using an ab-initio non-equilibrium
Green's function method. In particular, we study S-(CH2)m-C10H6-(CH2)n-S
dithiol with Naphthalene as a conjugated central group. The rectification
current ratio ~35 has been observed at m = 2 and n = 10, due to resonant
tunneling through the molecular orbital (MO) closest to the electrode Fermi
level (lowest unoccupied MO in the present case). The rectification is limited
by interference of other conducting orbitals, but can be improved by e.g.
adding an electron withdrawing group to the naphthalene.Comment: 8 pages, 9 figure
Vibrational signature of broken chemical order in a GeS2 glass: a molecular dynamics simulation
Using density functional molecular dynamics simulations, we analyze the
broken chemical order in a GeS glass and its impact on the dynamical
properties of the glass through the in-depth study of the vibrational
eigenvectors. We find homopolar bonds and the frequencies of the corresponding
modes are in agreement with experimental data. Localized S-S modes and 3-fold
coordinated sulfur atoms are found to be at the origin of specific Raman peaks
whose origin was not previously clear. Through the ring size statistics we
find, during the glass formation, a conversion of 3-membered rings into larger
units but also into 2-membered rings whose vibrational signature is in
agreement with experiments.Comment: 11 pages, 8 figures; to appear in Phys. Rev.
Efficient Recursion Method for Inverting Overlap Matrix
A new O(N) algorithm based on a recursion method, in which the computational
effort is proportional to the number of atoms N, is presented for calculating
the inverse of an overlap matrix which is needed in electronic structure
calculations with the the non-orthogonal localized basis set. This efficient
inverting method can be incorporated in several O(N) methods for
diagonalization of a generalized secular equation. By studying convergence
properties of the 1-norm of an error matrix for diamond and fcc Al, this method
is compared to three other O(N) methods (the divide method, Taylor expansion
method, and Hotelling's method) with regard to computational accuracy and
efficiency within the density functional theory. The test calculations show
that the new method is about one-hundred times faster than the divide method in
computational time to achieve the same convergence for both diamond and fcc Al,
while the Taylor expansion method and Hotelling's method suffer from numerical
instabilities in most cases.Comment: 17 pages and 4 figure
Systematic Study of Electron Localization in an Amorphous Semiconductor
We investigate the electronic structure of gap and band tail states in
amorphous silicon. Starting with two 216-atom models of amorphous silicon with
defect concentration close to the experiments, we systematically study the
dependence of electron localization on basis set, density functional and spin
polarization using the first principles density functional code Siesta. We
briefly compare three different schemes for characterizing localization:
information entropy, inverse participation ratio and spatial variance. Our
results show that to accurately describe defect structures within self
consistent density functional theory, a rich basis set is necessary. Our study
revealed that the localization of the wave function associated with the defect
states decreases with larger basis sets and there is some enhancement of
localization from GGA relative to LDA. Spin localization results obtained via
LSDA calculations, are in reasonable agreement with experiment and with
previous LSDA calculations on a-Si:H models.Comment: 16 pages, 11 Postscript figures, To appear in Phys. Rev.
Block bond-order potential as a convergent moments-based method
The theory of a novel bond-order potential, which is based on the block
Lanczos algorithm, is presented within an orthogonal tight-binding
representation. The block scheme handles automatically the very different
character of sigma and pi bonds by introducing block elements, which produces
rapid convergence of the energies and forces within insulators, semiconductors,
metals, and molecules. The method gives the first convergent results for
vacancies in semiconductors using a moments-based method with a low number of
moments. Our use of the Lanczos basis simplifies the calculations of the band
energy and forces, which allows the application of the method to the molecular
dynamics simulations of large systems. As an illustration of this convergent
O(N) method we apply the block bond-order potential to the large scale
simulation of the deformation of a carbon nanotube.Comment: revtex, 43 pages, 11 figures, submitted to Phys. Rev.
Anisotropic optical response of the diamond (111)-2x1 surface
The optical properties of the 21 reconstruction of the diamond (111)
surface are investigated. The electronic structure and optical properties of
the surface are studied using a microscopic tight-binding approach. We
calculate the dielectric response describing the surface region and investigate
the origin of the electronic transitions involving surface and bulk states. A
large anisotropy in the surface dielectric response appears as a consequence of
the asymmetric reconstruction on the surface plane, which gives rise to the
zigzag Pandey chains. The results are presented in terms of the reflectance
anisotropy and electron energy loss spectra. While our results are in good
agreement with available experimental data, additional experiments are proposed
in order to unambiguously determine the surface electronic structure of this
interesting surface.Comment: REVTEX manuscript with 6 postscript figures, all included in uu file.
Also available at http://www.phy.ohiou.edu/~ulloa/ulloa.html Submitted to
Phys. Rev.
An Effective-Medium Tight-Binding Model for Silicon
A new method for calculating the total energy of Si systems is presented. The
method is based on the effective-medium theory concept of a reference system.
Instead of calculating the energy of an atom in the system of interest a
reference system is introduced where the local surroundings are similar. The
energy of the reference system can be calculated selfconsistently once and for
all while the energy difference to the reference system can be obtained
approximately. We propose to calculate it using the tight-binding LMTO scheme
with the Atomic-Sphere Approximation(ASA) for the potential, and by using the
ASA with charge-conserving spheres we are able to treat open system without
introducing empty spheres. All steps in the calculational method is {\em ab
initio} in the sense that all quantities entering are calculated from first
principles without any fitting to experiment. A complete and detailed
description of the method is given together with test calculations of the
energies of phonons, elastic constants, different structures, surfaces and
surface reconstructions. We compare the results to calculations using an
empirical tight-binding scheme.Comment: 26 pages (11 uuencoded Postscript figures appended), LaTeX,
CAMP-090594-