16 research outputs found

    Asymptotics of the Farey Fraction Spin Chain Free Energy at the Critical Point

    Full text link
    We consider the Farey fraction spin chain in an external field hh. Using ideas from dynamical systems and functional analysis, we show that the free energy ff in the vicinity of the second-order phase transition is given, exactly, by f∌tlog⁥t−12h2tforh2â‰Ștâ‰Ș1. f \sim \frac t{\log t}-\frac1{2} \frac{h^2}t \quad \text{for} \quad h^2\ll t \ll 1 . Here t=λGlog⁥(2)(1−ÎČÎČc)t=\lambda_{G}\log(2)(1-\frac{\beta}{\beta_c}) is a reduced temperature, so that the deviation from the critical point is scaled by the Lyapunov exponent of the Gauss map, λG\lambda_G. It follows that λG\lambda_G determines the amplitude of both the specific heat and susceptibility singularities. To our knowledge, there is only one other microscopically defined interacting model for which the free energy near a phase transition is known as a function of two variables. Our results confirm what was found previously with a cluster approximation, and show that a clustering mechanism is in fact responsible for the transition. However, the results disagree in part with a renormalisation group treatment
    corecore