21 research outputs found

    Hamiltonian formulation of nonAbelian noncommutative gauge theories

    Get PDF
    We implement the Hamiltonian treatment of a nonAbelian noncommutative gauge theory, considering with some detail the algebraic structure of the noncommutative symmetry group. The first class constraints and Hamiltonian are obtained and their algebra derived, as well as the form of the gauge invariance they impose on the first order action.Comment: enlarged version, 7 pages, RevTe

    The ⋆\star-value Equation and Wigner Distributions in Noncommutative Heisenberg algebras

    Full text link
    We consider the quantum mechanical equivalence of the Seiberg-Witten map in the context of the Weyl-Wigner-Groenewold-Moyal phase-space formalism in order to construct a quantum mechanics over noncommutative Heisenberg algebras. The formalism is then applied to the exactly soluble Landau and harmonic oscillator problems in the 2-dimensional noncommutative phase-space plane, in order to derive their correct energy spectra and corresponding Wigner distributions. We compare our results with others that have previously appeared in the literature.Comment: 19 page

    Isotropic representation of noncommutative 2D harmonic oscillator

    Full text link
    We show that 2D noncommutative harmonic oscillator has an isotropic representation in terms of commutative coordinates. The noncommutativity in the new mode, induces energy level splitting, and is equivalent to an external magnetic field effect. The equivalence of the spectra of the isotropic and anisotropic representation is traced back to the existence of SU(2) invariance of the noncommutative model.Comment: 15 pages, RevTex4, no figures; article format, improved version of the previous paper; new references and aknowledgements adde

    Noncommutative N=1 super Yang-Mills, the Seiberg-Witten map and UV divergences

    Full text link
    Classically, the dual under the Seiberg-Witten map of noncommutative U(N), {\cal N}=1 super Yang-Mills theory is a field theory with ordinary gauge symmetry whose fields carry, however, a \theta-deformed nonlinear realisation of the {\cal N}=1 supersymmetry algebra in four dimensions. For the latter theory we work out at one-loop and first order in the noncommutative parameter matrix \theta^{\mu\nu} the UV divergent part of its effective action in the background-field gauge, and, for N>=2, we show that for finite values of N the gauge sector fails to be renormalisable; however, in the large N limit the full theory is renormalisable, in keeping with the expectations raised by the quantum behaviour of the theory's noncommutative classical dual. We also obtain --for N>=3, the case with N=2 being trivial-- the UV divergent part of the effective action of the SU(N) noncommutative theory in the enveloping-algebra formalism that is obtained from the previous ordinary U(N) theory by removing the U(1) degrees of freedom. This noncommutative SU(N) theory is also renormalisable.Comment: 33 pages, 4 figures. Version 2: Unnecessary files removed. Version 3: New types of field redefinitions were considered, which make the large N U(N) and the SU(N) theories renormalisable. The conclusions for U(N) with finite N remain unchanged. Version 4: Corrected mistyped equations, minor revision

    The Hamiltonian BRST quantization of a noncommutative nonabelian gauge theory and its Seiberg-Witten map

    Full text link
    We consider the Hamiltonian BRST quantization of a noncommutative non abelian gauge theory. The Seiberg-Witten map of all phase-space variables, including multipliers, ghosts and their momenta, is given in first order in the noncommutative parameter Ξ\theta. We show that there exists a complete consistence between the gauge structures of the original and of the mapped theories, derived in a canonical way, once we appropriately choose the map solutions.Comment: 10 pages, Latex. Address adde

    The topological AC effect on noncommutative phase space

    Get PDF
    The Aharonov-Casher (AC) effect in non-commutative(NC) quantum mechanics is studied. Instead of using the star product method, we use a generalization of Bopp's shift method. After solving the Dirac equations both on noncommutative space and noncommutative phase space by the new method, we obtain the corrections to AC phase on NC space and NC phase space respectively.Comment: 8 pages, Latex fil

    Seiberg-Witten Map for Superfields on Canonically Deformed N=1, d=4 Superspace

    Full text link
    In this paper we construct Seiberg-Witten maps for superfields on canonically deformed N=1, d=4 Minkowski and Euclidean superspace. On Minkowski superspace we show that the Seiberg-Witten map is not compatible with locality, (anti)chirality and supersymmetry at the same time. On Euclidean superspace we show that there exists a local, chiral and supersymmetric Seiberg-Witten map for chiral superfields if we take the noncommutativity parameter to be selfdual, and a local, antichiral and supersymmetric Seiberg-Witten map for antichiral superfields if we take the noncommutativity parameter to be antiselfdual, respectively.Comment: 24 pages, LaTeX; typos corrected, two comments adde

    Noncommutative Quantum Mechanics and Seiberg-Witten Map

    Full text link
    In order to overcome ambiguity problem on identification of mathematical objects in noncommutative theory with physical observables, quantum mechanical system coupled to the NC U(1) gauge field in the noncommutative space is reformulated by making use of the unitarized Seiberg-Witten map, and applied to the Aharonov-Bohm and Hall effects of the NC U(1) gauge field. Retaining terms only up to linear order in the NC parameter \theta, we find that the AB topological phase and the Hall conductivity have both the same formulas as those of the ordinary commutative space with no \theta-dependence.Comment: 7 pages, no figures, uses revtex4; 8 pages, conclusion changed, Appendix adde

    Landau Analog Levels for Dipoles in the Noncommutative Space and Phase Space

    Full text link
    In the present contribution we investigate the Landau analog energy quantization for neutral particles, that possesses a nonzero permanent magnetic and electric dipole moments, in the presence of an homogeneous electric and magnetic external fields in the context of the noncommutative quantum mechanics. Also, we analyze the Landau--Aharonov--Casher and Landau--He--McKellar--Wilkens quantization due to noncommutative quantum dynamics of magnetic and electric dipoles in the presence of an external electric and magnetic fields and the energy spectrum and the eigenfunctions are obtained. Furthermore, we have analyzed Landau quantization analogs in the noncommutative phase space, and we obtain also the energy spectrum and the eigenfunctions in this context.Comment: 20 pages, references adde

    Time-Space Noncommutativity in Gravitational Quantum Well scenario

    Get PDF
    A novel approach to the analysis of the gravitational well problem from a second quantised description has been discussed. The second quantised formalism enables us to study the effect of time space noncommutativity in the gravitational well scenario which is hitherto unavailable in the literature. The corresponding first quantized theory reveals a leading order perturbation term of noncommutative origin. Latest experimental findings are used to estimate an upper bound on the time--space noncommutative parameter. Our results are found to be consistent with the order of magnitude estimations of other NC parameters reported earlier.Comment: 7 pages, revTe
    corecore