10 research outputs found

    Logarithmic Corrections in Dynamic Isotropic Percolation

    Full text link
    Based on the field theoretic formulation of the general epidemic process we study logarithmic corrections to scaling in dynamic isotropic percolation at the upper critical dimension d=6. Employing renormalization group methods we determine these corrections for some of the most interesting time dependent observables in dynamic percolation at the critical point up to and including the next to leading correction. For clusters emanating from a local seed at the origin we calculate the number of active sites, the survival probability as well as the radius of gyration.Comment: 9 pages, 3 figures, version to appear in Phys. Rev.

    Noisy random resistor networks: renormalized field theory for the multifractal moments of the current distribution

    Full text link
    We study the multifractal moments of the current distribution in randomly diluted resistor networks near the percolation treshold. When an external current is applied between to terminals xx and xx^\prime of the network, the llth multifractal moment scales as MI(l)(x,x)xxψl/νM_I^{(l)} (x, x^\prime) \sim | x - x^\prime |^{\psi_l /\nu}, where ν\nu is the correlation length exponent of the isotropic percolation universality class. By applying our concept of master operators [Europhys. Lett. {\bf 51}, 539 (2000)] we calculate the family of multifractal exponents {ψl}\{\psi_l \} for l0l \geq 0 to two-loop order. We find that our result is in good agreement with numerical data for three dimensions.Comment: 30 pages, 6 figure

    Percolating granular superconductors

    Full text link
    We investigate diamagnetic fluctuations in percolating granular superconductors. Granular superconductors are known to have a rich phase diagram including normal, superconducting and spin glass phases. Focusing on the normal-superconducting and the normal-spin glass transition at low temperatures, we study he diamagnetic susceptibility χ(1)\chi^{(1)} and the mean square fluctuations of the total magnetic moment χ(2)\chi^{(2)} of large clusters. Our work is based on a random Josephson network model that we analyze with the powerful methods of renormalized field theory. We investigate the structural properties of the Feynman diagrams contributing to the renormalization of χ(1)\chi^{(1)} and χ(2)\chi^{(2)}. This allows us to determine the critical behavior of χ(1)\chi^{(1)} and χ(2)\chi^{(2)} to arbitrary order in perturbation theory.Comment: 18 pages, 2 figure

    Bohmian mechanics, the quantum-classical correspondence and the classical limit: the case of the square billiard

    Full text link
    Square billiards are quantum systems complying with the dynamical quantum-classical correspondence. Hence an initially localized wavefunction launched along a classical periodic orbit evolves along that orbit, the spreading of the quantum amplitude being controlled by the spread of the corresponding classical statistical distribution. We investigate wavepacket dynamics and compute the corresponding de Broglie-Bohm trajectories in the quantum square billiard. We also determine the trajectories and statistical distribution dynamics for the equivalent classical billiard. Individual Bohmian trajectories follow the streamlines of the probability flow and are generically non-classical. This can also hold even for short times, when the wavepacket is still localized along a classical trajectory. This generic feature of Bohmian trajectories is expected to hold in the classical limit. We further argue that in this context decoherence cannot constitute a viable solution in order to recover classicality.Comment: Figures downgraded to low resolution; To be published in Found. Phys. (2009)

    Random Resistor-Diode Networks and the Crossover from Isotropic to Directed Percolation

    Full text link
    By employing the methods of renormalized field theory we show that the percolation behavior of random resistor-diode networks near the multicritical line belongs to the universality class of isotropic percolation. We construct a mesoscopic model from the general epidemic process by including a relevant isotropy-breaking perturbation. We present a two-loop calculation of the crossover exponent ϕ\phi. Upon blending the ϵ\epsilon-expansion result with the exact value ϕ=1\phi =1 for one dimension by a rational approximation, we obtain for two dimensions ϕ=1.29±0.05\phi = 1.29\pm 0.05. This value is in agreement with the recent simulations of a two-dimensional random diode network by Inui, Kakuno, Tretyakov, Komatsu, and Kameoka, who found an order parameter exponent β\beta different from those of isotropic and directed percolation. Furthermore, we reconsider the theory of the full crossover from isotropic to directed percolation by Frey, T\"{a}uber, and Schwabl and clear up some minor shortcomings.Comment: 24 pages, 2 figure

    Spanning forests and the q-state Potts model in the limit q \to 0

    Get PDF
    We study the q-state Potts model with nearest-neighbor coupling v=e^{\beta J}-1 in the limit q,v \to 0 with the ratio w = v/q held fixed. Combinatorially, this limit gives rise to the generating polynomial of spanning forests; physically, it provides information about the Potts-model phase diagram in the neighborhood of (q,v) = (0,0). We have studied this model on the square and triangular lattices, using a transfer-matrix approach at both real and complex values of w. For both lattices, we have computed the symbolic transfer matrices for cylindrical strips of widths 2 \le L \le 10, as well as the limiting curves of partition-function zeros in the complex w-plane. For real w, we find two distinct phases separated by a transition point w=w_0, where w_0 = -1/4 (resp. w_0 = -0.1753 \pm 0.0002) for the square (resp. triangular) lattice. For w > w_0 we find a non-critical disordered phase, while for w < w_0 our results are compatible with a massless Berker-Kadanoff phase with conformal charge c = -2 and leading thermal scaling dimension x_{T,1} = 2 (marginal operator). At w = w_0 we find a "first-order critical point": the first derivative of the free energy is discontinuous at w_0, while the correlation length diverges as w \downarrow w_0 (and is infinite at w = w_0). The critical behavior at w = w_0 seems to be the same for both lattices and it differs from that of the Berker-Kadanoff phase: our results suggest that the conformal charge is c = -1, the leading thermal scaling dimension is x_{T,1} = 0, and the critical exponents are \nu = 1/d = 1/2 and \alpha = 1.Comment: 131 pages (LaTeX2e). Includes tex file, three sty files, and 65 Postscript figures. Also included are Mathematica files forests_sq_2-9P.m and forests_tri_2-9P.m. Final journal versio
    corecore