6 research outputs found

    Spacetime singularity resolution by M-theory fivebranes: calibrated geometry, Anti-de Sitter solutions and special holonomy metrics

    Full text link
    The supergravity description of various configurations of supersymmetric M-fivebranes wrapped on calibrated cycles of special holonomy manifolds is studied. The description is provided by solutions of eleven-dimensional supergravity which interpolate smoothly between a special holonomy manifold and an event horizon with Anti-de Sitter geometry. For known examples of Anti-de Sitter solutions, the associated special holonomy metric is derived. One explicit Anti-de Sitter solution of M-theory is so treated for fivebranes wrapping each of the following cycles: K\"{a}hler cycles in Calabi-Yau two-, three- and four-folds; special lagrangian cycles in three- and four-folds; associative three- and co-associative four-cycles in G2G_2 manifolds; complex lagrangian four-cycles in Sp(2)Sp(2) manifolds; and Cayley four-cycles in Spin(7)Spin(7) manifolds. In each case, the associated special holonomy metric is singular, and is a hyperbolic analogue of a known metric. The analogous known metrics are respectively: Eguchi-Hanson, the resolved conifold and the four-fold resolved conifold; the deformed conifold, and the Stenzel four-fold metric; the Bryant-Salamon-Gibbons-Page-Pope G2G_2 metrics on an R4\mathbb{R}^4 bundle over S3S^3, and an R3\mathbb{R}^3 bundle over S4S^4 or CP2\mathbb{CP}^2; the Calabi hyper-K\"{a}hler metric on TCP2T^*\mathbb{CP}^2; and the Bryant-Salamon-Gibbons-Page-Pope Spin(7)Spin(7) metric on an R4\mathbb{R}^4 bundle over S4S^4. By the AdS/CFT correspondence, a conformal field theory is associated to each of the new singular special holonomy metrics, and defines the quantum gravitational physics of the resolution of their singularities.Comment: 1+52 page

    General Supersymmetric Solutions of Five-Dimensional Supergravity

    Full text link
    The classification of 1/4-supersymmetric solutions of five dimensional gauged supergravity coupled to arbitrary many abelian vector multiplets, which was initiated in hep-th/0401129, is completed. The structure of all solutions for which the Killing vector constructed from the Killing spinor is null is investigated in both the gauged and the ungauged theories and some new solutions are constructed.Comment: 24 pages, references added, uses JHEP3.cl

    Supersymmetric AdS_3, AdS_2 and Bubble Solutions

    Get PDF
    We present new supersymmetric AdS_3 solutions of type IIB supergravity and AdS_2 solutions of D=11 supergravity. The former are dual to conformal field theories in two dimensions with N=(0,2) supersymmetry while the latter are dual to conformal quantum mechanics with two supercharges. Our construction also includes AdS_2 solutions of D=11 supergravity that have non-compact internal spaces which are dual to three-dimensional N=2 superconformal field theories coupled to point-like defects. We also present some new bubble-type solutions, corresponding to BPS states in conformal theories, that preserve four supersymmetries.Comment: v2: 33 pages, published version in JHE

    1/4-BPS M-theory bubbles with SO(3) x SO(4) symmetry

    Full text link
    In this paper we generalize the work of Lin, Lunin and Maldacena on the classification of 1/2-BPS M-theory solutions to a specific class of 1/4-BPS configurations. We are interested in the solutions of 11 dimensional supergravity with SO(3)×SO(4)SO(3)\times SO(4) symmetry, and it is shown that such solutions are constructed over a one-parameter familiy of 4 dimensional almost Calabi-Yau spaces. Through analytic continuations we can obtain M-theory solutions having AdS2×S3AdS_2\times S^3 or AdS3×S2AdS_3\times S^2 factors. It is shown that our result is equivalent to the AdSAdS solutions which have been recently reported as the near-horizon geometry of M2 or M5-branes wrapped on 2 or 4-cycles in Calabi-Yau threefolds. We also discuss the hierarchy of M-theory bubbles with different number of supersymmetries.Comment: 22 pages, JHEP3.cls; v2. revised version. showed that our results agree with previous works hep-th/0605146 and hep-th/061219

    Geometries with Killing Spinors and Supersymmetric AdS Solutions

    Full text link
    The seven and nine dimensional geometries associated with certain classes of supersymmetric AdS3AdS_3 and AdS2AdS_2 solutions of type IIB and D=11 supergravity, respectively, have many similarities with Sasaki-Einstein geometry. We further elucidate their properties and also generalise them to higher odd dimensions by introducing a new class of complex geometries in 2n+22n+2 dimensions, specified by a Riemannian metric, a scalar field and a closed three-form, which admit a particular kind of Killing spinor. In particular, for n3n\ge 3, we show that when the geometry in 2n+22n+2 dimensions is a cone we obtain a class of geometries in 2n+12n+1 dimensions, specified by a Riemannian metric, a scalar field and a closed two-form, which includes the seven and nine-dimensional geometries mentioned above when n=3,4n=3,4, respectively. We also consider various ansatz for the geometries and construct infinite classes of explicit examples for all nn.Comment: 28 page

    1/2-BPS states in M theory and defects in the dual CFTs

    Full text link
    We study supersymmetric branes in AdS_7 x S^4 and AdS_4 x S^7. We show that in the former case the membranes should be viewed as M5 branes with fluxes and we identify two types of such fivebranes (they are analogous to giant gravitons and to dual giants). In AdS_4 x S^7 we find both M5 branes with fluxes and freestanding stacks of membranes. We also go beyond probe approximation and construct regular supergravity solutions describing geometries produced by the branes. The metrics are completely specified by one function which satisfies either Laplace or Toda equation and we give a complete classification of boundary conditions leading to smooth geometries. The brane configurations discussed in this paper are dual to various defects in three- and six-dimensional conformal field theories.Comment: 82 pages, 12 figures, added ref
    corecore