3 research outputs found
ΠΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π° ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π±ΠΈΠΎΠ³Π΅Π½Π½ΡΡ ΠΊΠ²Π°Π½ΡΠΎΠ²ΡΡ ΡΠΎΡΠ΅ΠΊ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ ΡΡΠ»ΡΡΠΈΠ΄ΠΎΠ² ΡΠ΅ΡΠ΅Π±ΡΠ°, ΠΊΠ°Π΄ΠΌΠΈΡ ΠΈ ΡΠΈΠ½ΠΊΠ° Π΄Π»Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ Π±ΠΈΠΎΠ½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ²
The possibility of applying silver, cadmium and zinc sulfide nanoparticles (npAg2S, npCdS and npZnS) obtained using Shewanella oneidensis MR-1 and Bacillus subtilis 168 bacterial cultures for the creation of a new class of polymeric bionanocomposite materials was investigated. Biogenic nanoparticles obtained in aqueous solutions of the corresponding salts in the presence of various types of microorganisms are characterized by the presence of protein molecules on their surface. The molecules composition is determined by the bacterial culture. Proteins stabilize them and allow the nanoparticles to covalently join the active groups of polymeric carriers. Aminated chloromethylated polystyrene microspheres, as well as ion-exchange resins of various types, were used as polymeric matrices. Analysis of interaction with them can be used as a method for studying the properties of biogenic nanoparticles of metal sulfides for subsequent successful selection of a polymeric carrier. The immobilization of biogenic nanoparticles of metal sulfides onto the surface of aminated chloromethylated polystyrene microspheres was found to depend on the level of stability of aqueous nanoparticle suspensions and is determined by the negative charge of biogenic npAg2S, npCdS and npZnS, which suggests covalent binding and the electrostatic interaction of the components in the composition of the polymer bionanocomposite. A comparative analysis of the parameters of nanoparticles depending on the strain used in the biosynthesis was carried out. Analysis of the main physicochemical characteristics of npCdS and npZnS showed that the small size of nanoparticles (npCdS - 5 nm, npZnS - up to 2 nm) and the presence of luminescence peaks at wavelengths less than 400 nm classify them in the blue region of the fluorescence spectrum and identify them as quantum dots. Thus, the possibility of introducing fluorescent quantum dots of nanoparticles of metal sulfides of biogenic origin into various polymeric matrices has been demonstrated, which contributes to the expansion of the horizons for using a new class of nanoparticles to create polymeric bionanocomposites.ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ ΡΡΠ»ΡΡΠΈΠ΄Π° ΡΠ΅ΡΠ΅Π±ΡΠ°, ΠΊΠ°Π΄ΠΌΠΈΡ ΠΈ ΡΠΈΠ½ΠΊΠ° (npAg2S, npCdS ΠΈ npZnS), ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΠΊΡΠ»ΡΡΡΡ Shewanella oneidensis MR-1 ΠΈ Bacillus subtilis 168, Π΄Π»Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠ»Π°ΡΡΠ° ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ
Π±ΠΈΠΎΠ½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ². ΠΠΈΠΎΠ³Π΅Π½Π½ΡΠ΅ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡΡ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π² Π²ΠΎΠ΄Π½ΡΡ
ΡΠ°ΡΡΠ²ΠΎΡΠ°Ρ
ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ
ΡΠΎΠ»Π΅ΠΉ Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠΈΠΏΠΎΠ² ΠΌΠΈΠΊΡΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΎΠ², Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΡΡ Π½Π°Π»ΠΈΡΠΈΠ΅ΠΌ Π½Π° ΠΈΡ
ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ Π±Π΅Π»ΠΊΠΎΠ²ΡΡ
ΠΌΠΎΠ»Π΅ΠΊΡΠ», ΡΠΎΡΡΠ°Π² ΠΊΠΎΡΠΎΡΡΡ
ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΡΠ»ΡΡΡΡΠΎΠΉ. ΠΠ΅Π»ΠΊΠΈ ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·ΠΈΡΡΡΡ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡΡ ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΠΈΠΌ ΠΊΠΎΠ²Π°Π»Π΅Π½ΡΠ½ΠΎ ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΡΡ ΠΊ Π°ΠΊΡΠΈΠ²Π½ΡΠΌ Π³ΡΡΠΏΠΏΠ°ΠΌ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ
Π½ΠΎΡΠΈΡΠ΅Π»Π΅ΠΉ. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ
ΠΌΠ°ΡΡΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ Π°ΠΌΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ Ρ
Π»ΠΎΡΠΌ,Π΅ΡΠΈΠ»ΠΈΡΠΎΠ²Π°Π½-Π½ΡΠ΅ ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΎΠ»ΡΠ½ΡΠ΅ ΠΌΠΈΠΊΡΠΎΡΡΠ΅ΡΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΡΠ΅ ΡΠΌΠΎΠ»Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠΈΠΏΠΎΠ². ΠΠ½Π°Π»ΠΈΠ· Π²Π·Π°ΠΈΠ»ΡΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Ρ Π½ΠΈΠΌΠΈ Π»ΡΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π»ΡΠ΅ΡΠΎΠ΄Π° ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΠ²ΠΎΠΉΡΡΠ² Π±ΠΈΠΎΠ³Π΅Π½Π½ΡΡ
Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ ΡΡΠ»ΡΡΠΈΠ΄ΠΎΠ² ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² Π΄Π»Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅Π³ΠΎ ΡΡΠΏΠ΅ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ±ΠΎΡΠ° ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ Π½ΠΎΡΠΈΡΠ΅Π»Ρ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°ΡΠΈΡ Π±ΠΈΠΎΠ³Π΅Π½Π½ΡΡ
Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ ΡΡΠ»ΡΡΠΈΠ΄ΠΎΠ² ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ Π°ΠΌΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Ρ
Π»ΠΎΡΠΌΠ΅ΡΠΈΠ»ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΎΠ»ΡΠ½ΡΡ
ΠΌΠΈΠΊΡΠΎΡΡΠ΅Ρ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΡΡΠΎΠ²Π½Ρ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ Π²ΠΎΠ΄Π½ΡΡ
ΡΡΡΠΏΠ΅Π½Π·ΠΈΠΉ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ Π·Π°ΡΡΠ΄ΠΎΠΌ Π±ΠΈΠΎΠ³Π΅Π½Π½ΡΡ
npAg2S, npCdS ΠΈ npZnS, ΡΡΠΎ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ ΠΊΠΎΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠ²ΡΠ·ΡΠ²Π°Π½ΠΈΠ΅ ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² Π² ΡΠΎΡΡΠ°Π²Π΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ Π±ΠΈΠΎΠ½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ°. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΡΠ°ΠΌΠΌΠ°, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΠΎΠ³ΠΎ Π² Π±ΠΈΠΎΡΠΈΠ½ΡΠ΅Π·Π΅. ΠΠ½Π°Π»ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΡΠΈΠ·ΠΈΠΊΠΎ-Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ npCdS ΠΈ npZnS ΠΏΠΎΠΊΠ°Π·Π°Π», ΡΡΠΎ Π½Π΅Π±ΠΎΠ»ΡΡΠΈΠ΅ ΡΠ°Π·ΠΌΠ΅ΡΡ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ (npCdS - 5 Π½ΠΌ, npZnS - Π΄ΠΎ 2 Π½ΠΌ) ΠΈ Π½Π°Π»ΠΈΡΠΈΠ΅ Π»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠ½ΡΡ
ΠΏΠΈΠΊΠΎΠ² Π½Π° Π΄Π»ΠΈΠ½Π°Ρ
Π²ΠΎΠ»Π½ ΠΌΠ΅Π½Π΅Π΅ 400 Π½ΠΌ, ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠΈΡ ΠΈΡ
ΠΊ ΡΠΈΠ½Π΅ΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠΏΠ΅ΠΊΡΡΠ° ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΊΠ»Π°ΡΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°ΡΡ ΠΈΡ
ΠΊΠ°ΠΊ ΠΊΠ²Π°Π½ΡΠΎΠ²ΡΠ΅ ΡΠΎΡΠΊΠΈ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π±ΡΠ»Π° ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠ½ΡΡ
ΠΊΠ²Π°Π½ΡΠΎΠ²ΡΡ
ΡΠΎΡΠ΅ΠΊ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ ΡΡΠ»ΡΡΠΈΠ΄ΠΎΠ² ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² Π±ΠΈΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΠ΅ ΠΌΠ°ΡΡΠΈΡΡ, ΡΡΠΎ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΠ΅Ρ ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΡ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠΎΠ² ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠ»Π°ΡΡΠ° Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ Π΄Π»Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ
Π±ΠΈΠΎΠ½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΎΠ²
Prospects of Applying Biogenic Quantum Dots of Silver, Cadmium and Zinc Sulfides Nanoparticles to Create Polymeric Bionanocomposite Materials
The possibility of applying silver, cadmium and zinc sulfide nanoparticles (npAg2S, npCdS and npZnS) obtained using Shewanella oneidensis MR-1 and Bacillus subtilis 168 bacterial cultures for the creation of a new class of polymeric bionanocomposite materials was investigated. Biogenic nanoparticles obtained in aqueous solutions of the corresponding salts in the presence of various types of microorganisms are characterized by the presence of protein molecules on their surface. The molecules composition is determined by the bacterial culture. Proteins stabilize them and allow the nanoparticles to covalently join the active groups of polymeric carriers. Aminated chloromethylated polystyrene microspheres, as well as ion-exchange resins of various types, were used as polymeric matrices. Analysis of interaction with them can be used as a method for studying the properties of biogenic nanoparticles of metal sulfides for subsequent successful selection of a polymeric carrier. The immobilization of biogenic nanoparticles of metal sulfides onto the surface of aminated chloromethylated polystyrene microspheres was found to depend on the level of stability of aqueous nanoparticle suspensions and is determined by the negative charge of biogenic npAg2S, npCdS and npZnS, which suggests covalent binding and the electrostatic interaction of the components in the composition of the polymer bionanocomposite. A comparative analysis of the parameters of nanoparticles depending on the strain used in the biosynthesis was carried out. Analysis of the main physicochemical characteristics of npCdS and npZnS showed that the small size of nanoparticles (npCdS - 5 nm, npZnS - up to 2 nm) and the presence of luminescence peaks at wavelengths less than 400 nm classify them in the blue region of the fluorescence spectrum and identify them as quantum dots. Thus, the possibility of introducing fluorescent quantum dots of nanoparticles of metal sulfides of biogenic origin into various polymeric matrices has been demonstrated, which contributes to the expansion of the horizons for using a new class of nanoparticles to create polymeric bionanocomposites
Biochemical changes in the exocrine portion of the pancreas in rats kept on hypocaloric diet
ΠΠ°Ρ
Π²ΠΎΡΡΠ²Π°Π½Π½Ρ ΠΏΡΠ΄ΡΠ»ΡΠ½ΠΊΠΎΠ²ΠΎΡ Π·Π°Π»ΠΎΠ·ΠΈ Π½Π°ΡΠ°Π·Ρ ΠΌΠ°ΡΡΡ Π±Π΅Π·Π»ΡΡ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠ½ΡΠΎ Π²ΠΈΠ²ΡΠ΅Π½ΠΈΡ
Π΅ΡΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΡ
ΡΠΈΠ½Π½ΠΈΠΊΡΠ², ΠΎΠ΄Π½ΠΈΠΌ Π· ΡΠΊΠΈΡ
Ρ Π½Π΅Π·Π±Π°Π»Π°Π½ΡΠΎΠ²Π°Π½Π΅ Ρ
Π°ΡΡΡΠ²Π°Π½Π½Ρ, ΡΠΊΠ΅ ΠΏΡΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡ Π΄ΠΎ Π΄ΡΡΡΠ΅ΡΠΌΠ΅Π½ΡΠΎΠ·ΡΠ². ΠΠ΅ΡΠΎΡ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Ρ Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ Π²ΠΏΠ»ΠΈΠ²Ρ Π³ΡΠΏΠΎΠΊΠ°Π»ΠΎΡΡΠΉΠ½ΠΎΠ³ΠΎ Ρ
Π°ΡΡΡΠ²Π°Π½Π½Ρ Π½Π° ΠΌΠΎΡΡΠΎΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ½ΠΈΠΉ ΡΡΠ°Π½ Π΅ΠΊΠ·ΠΎΠΊΡΠΈΠ½Π½ΠΎΡ ΡΠ°ΡΡΠΈΠ½ΠΈ ΠΏΡΠ΄ΡΠ»ΡΠ½ΠΊΠΎΠ²ΠΎΡ Π·Π°Π»ΠΎΠ·ΠΈ ΡΡΡΡΠ². ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ²ΡΡ Π½Π° 20 ΡΡΡΠ°Ρ
, ΡΠΊΡ Π±ΡΠ»ΠΈ ΡΠΎΠ·Π΄ΡΠ»Π΅Π½Ρ Π½Π° 2 Π³ΡΡΠΏΠΈ ΠΏΠΎ 10 ΡΡΡΡΠ². Π ΠΏΠ΅ΡΡΡ Π³ΡΡΠΏΡ Π²Ρ
ΠΎΠ΄ΠΈΠ»ΠΈ ΡΡΡΠΈ Π½Π° Π³ΡΠΏΠΎΠΊΠ°Π»ΠΎΡΡΠΉΠ½ΠΎΠΌΡ Ρ
Π°ΡΡΡΠ²Π°Π½Π½Ρ (57,4 ΠΊΠ°Π»ΠΎΡΡΠΉ Π½Π° Π΄ΠΎΠ±Ρ). Π’Π²Π°ΡΠΈΠ½ΠΈ Π³ΡΡΠΏΠΈ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΎΡΡΠΈΠΌΠ°Π»ΠΈ Π·Π±Π°Π»Π°Π½ΡΠΎΠ²Π°Π½Π΅ Ρ
Π°ΡΡΡΠ²Π°Π½Π½Ρ (104,5 ΠΊΠ°Π»ΠΎΡΡΠΉ). ΠΡΠΈ Π±ΡΠΎΡ
ΡΠΌΡΡΠ½ΠΎΠΌΡ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π²ΠΈΠ·Π½Π°ΡΠ°Π»ΠΈΡΡ ΡΡΠ²Π½Ρ Π»ΡΠΏΠ°Π·ΠΈ, Ξ±-Π°ΠΌΡΠ»Π°Π·ΠΈ Ρ Ξ±1-Π°Π½ΡΠΈΡΡΠΈΠΏΡΠΈΠ½Ρ Π² ΡΠΈΡΠΎΠ²Π°ΡΡΡ ΠΊΡΠΎΠ²Ρ. ΠΠ½Π°Π»ΡΠ· Π·ΠΎΠ²Π½ΡΡΠ½ΡΠΎΡΠ΅ΠΊΡΠ΅ΡΠΎΡΠ½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠ΄ΡΠ»ΡΠ½ΠΊΠΎΠ²ΠΎΡ Π·Π°Π»ΠΎΠ·ΠΈ Ρ ΡΡΡΡΠ² ΠΏΠΎΠΊΠ°Π·Π°Π², ΡΠΎ Ρ 100% Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΈΡ
ΡΠ²Π°ΡΠΈΠ½ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΡ Π³ΡΡΠΏΠΈ ΠΌΠ°Ρ ΠΌΡΡΡΠ΅ Π΅ΠΊΠ·ΠΎΠΊΡΠΈΠ½Π½Π° ΠΏΠ°Π½ΠΊΡΠ΅Π°ΡΠΈΡΠ½Π° Π΄ΠΈΡΡΡΠ½ΠΊΡΡΡ. ΠΠΈΡΠ²Π»Π΅Π½ΠΎ, ΡΠΎ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ ΡΡΠ²Π½Ρ Π»ΡΠΏΠ°Π·ΠΈ Ρ Ξ±-Π°ΠΌΡΠ»Π°Π·ΠΈ ΠΏΡΠ΄Π²ΠΈΡΠ΅Π½ΠΎ Π² ΠΏΠΎΡΡΠ²Π½ΡΠ½Π½Ρ Π· Π³ΡΡΠΏΠΎΡ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ, ΠΏΡΠΈ ΡΡΠΎΠΌΡ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊ Ξ±1-Π°Π½ΡΠΈΡΡΠΈΠΏΡΠΈΠ½Ρ Π·Π½ΠΈΠΆΠ΅Π½ΠΈΠΉ. ΠΠΎΠ΄ΡΠ±Π½Ρ Π±ΡΠΎΡ
ΡΠΌΡΡΠ½Ρ Π·ΠΌΡΠ½ΠΈ Π² ΡΠΈΡΠΎΠ²Π°ΡΠΊΠΈ ΠΊΡΠΎΠ²Ρ ΡΠ²Π°ΡΠΈΠ½ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΡ Π³ΡΡΠΏΠΈ ΡΠ²ΠΈΠ΄ΡΠ΅ Π·Π° Π²ΡΠ΅ Ρ Π½Π°ΡΠ»ΡΠ΄ΠΊΠΎΠΌ ΡΡΠΈΠ²Π°Π»ΠΎΡ Π³ΡΠΏΠ΅ΡΡΡΡΠΏΡΡΠ½Π΅ΠΌΡΡ, ΡΠΊΠ° ΠΎΠ±ΡΠΌΠΎΠ²Π»Π΅Π½Π° Π½Π΅Π΄ΠΎΡΡΠ°ΡΠ½ΡΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ Π°Π½ΡΡΠΏΡΠΎΡΠ΅ΡΠ½Π°Π·Π½ΠΎΡ ΡΠΈΡΡΠ΅ΠΌΠΈ, Π° ΡΠ°ΠΊΠΎΠΆ Π°ΠΊΡΠΈΠ²Π½ΠΈΠΌ ΡΠΏΠΎΠΆΠΈΠ²Π°Π½Π½ΡΠΌ ΠΏΠ»Π°Π·ΠΌΠΎΠ²ΠΈΡ
ΡΠ½Π³ΡΠ±ΡΡΠΎΡΡΠ² ΠΏΡΠΎΡΠ΅Π°Π·. ΠΡΠΏΠ΅ΡΡΠ΅ΡΠΌΠ΅Π½ΡΠ΅ΠΌΡΡ Ρ ΡΡΡΡΠ² 1-Ρ Π³ΡΡΠΏΠΈ ΠΎΠ±ΡΠΌΠΎΠ²Π»Π΅Π½Π°: ΡΡΠΈΠΌΡΠ»ΡΡΡΠΈΠΌ Π½Π΅ΠΉΡΠΎΠ³ΡΠΌΠΎΡΠ°Π»ΡΠ½ΠΈΠΌ Π²ΠΏΠ»ΠΈΠ²ΠΎΠΌ Π½Π° Π°ΡΠΈΠ½ΠΎΡΠΈΡΠΈ, Π½Π°ΠΏΡΠΈΠΊΠ»Π°Π΄ Β«Π²Π°Π³ΠΎΡΠΎΠ½ΡΡΡΒ», ΠΏΠΎΡΠΊΠΎΠ΄ΠΆΠ΅Π½Π½ΡΠΌ ΠΏΠ°Π½ΠΊΡΠ΅Π°ΡΠΈΡΡΠ², Π½Π°ΡΠ»ΡΠ΄ΠΊΠΎΠΌ Β«ΡΠ΅Π½ΠΎΠΌΠ΅Π½Π° ΡΡ
ΠΈΠ»Π΅Π½Π½Ρ ΡΠ΅ΡΠΌΠ΅Π½ΡΡΠ²Β». ΠΡΠΏΠΎΠΊΠ°Π»ΠΎΡΡΠΉΠ½Π΅ Ρ
Π°ΡΡΡΠ²Π°Π½Π½Ρ Π½Π΅ΡΠΏΡΠΈΡΡΠ»ΠΈΠ²ΠΎ Π²ΠΏΠ»ΠΈΠ²Π°Ρ Π½Π° ΡΠΎΠ±ΠΎΡΡ Π΅ΠΊΠ·ΠΎΠΊΡΠΈΠ½Π½ΠΎΡ ΡΠ°ΡΡΠΈΠ½ΠΈ ΠΏΡΠ΄ΡΠ»ΡΠ½ΠΊΠΎΠ²ΠΎΡ Π·Π°Π»ΠΎΠ·ΠΈ ΡΡΡΡΠ², Π²ΠΈΠΊΠ»ΠΈΠΊΠ°ΡΡΠΈ ΡΡ Π³ΡΠΏΠ΅ΡΡΡΠ½ΠΊΡΡΡ, Π½Π° ΡΠΎ Π²ΠΊΠ°Π·ΡΡ ΠΏΡΠ΄Π²ΠΈΡΠ΅Π½Π½Ρ ΡΡΠ²Π½Ρ ΡΠ΅ΡΠΌΠ΅Π½ΡΡΠ² Π² ΠΊΡΠΎΠ²Ρ. Π§Π΅ΡΠ΅Π· ΡΡΠΈΠ²Π°Π»Ρ Π³ΡΠΏΠ΅ΡΡΡΡΠΏΡΡΠ½Π΅ΠΌΡΡ Π²ΡΠ΄Π±ΡΠ²Π°ΡΡΡΡΡ Π²ΠΈΡΠ½Π°ΠΆΠ΅Π½Π½Ρ Π°Π½ΡΠΈΠΏΡΠΎΡΠ΅Π°Π·Π½ΠΎΡ ΡΠΈΡΡΠ΅ΠΌΠΈ Π· ΠΏΠΎΠ΄Π°Π»ΡΡΠΎΡ ΡΠ½ΡΠΎΠΊΡΠΈΠΊΠ°ΡΡΡΡ Ρ ΠΏΠΎΡΠΊΠΎΠ΄ΠΆΠ΅Π½Π½ΡΠΌ Π°ΠΊΡΠΈΠ²Π½ΠΈΠΌΠΈ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ°ΠΌΠΈ ΠΏΡΠ΄ΡΠ»ΡΠ½ΠΊΠΎΠ²ΠΎΡ Π·Π°Π»ΠΎΠ·ΠΈ ΠΊΠ»ΡΡΠΈΠ½ ΠΎΡΠ³Π°Π½ΡΠ·ΠΌΡ. ΠΠ΅Π·Π±Π°Π»Π°Π½ΡΠΎΠ²Π°Π½Π΅ Ρ
Π°ΡΡΡΠ²Π°Π½Π½Ρ ΡΠ²Π»ΡΡ ΡΠΎΠ±ΠΎΡ ΡΠ°ΠΊΡΠΎΡ ΡΠΈΠ·ΠΈΠΊΡ ΡΠΎΠ·Π²ΠΈΡΠΊΡ ΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ½ΠΈΡ
Ρ ΠΎΡΠ³Π°Π½ΡΡΠ½ΠΈΡ
ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΡΠΉ ΠΏΡΠ΄ΡΠ»ΡΠ½ΠΊΠΎΠ²ΠΎΡ Π·Π°Π»ΠΎΠ·ΠΈ Π· ΠΏΠΎΠ΄Π°Π»ΡΡΠΈΠΌ Π·Π°Π»ΡΡΠ΅Π½Π½ΡΠΌ ΡΠ½ΡΠΈΡ
ΡΠΈΡΡΠ΅ΠΌ Ρ ΠΎΡΠ³Π°Π½ΡΠ² Π² ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΠΉ ΠΏΡΠΎΡΠ΅Ρ.ΠΠ°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡ ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ Π½Π° Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΈΠΌΠ΅ΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΈΠ·ΡΡΠ΅Π½Π½ΡΡ
ΡΡΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ°ΠΊΡΠΎΡΠΎΠ², ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ
ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΡΠ±Π°Π»Π°Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΠΏΠΈΡΠ°Π½ΠΈΠ΅, ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡΠ΅Π΅ ΠΊ Π΄ΠΈΡΡΠ΅ΡΠΌΠ΅Π½ΡΠΎΠ·Π°ΠΌ. Π¦Π΅Π»ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ Π²Π»ΠΈΡΠ½ΠΈΡ Π³ΠΈΠΏΠΎΠΊΠ°Π»ΠΎΡΠΈΠΉΠ½ΠΎΠ³ΠΎ ΠΏΠΈΡΠ°Π½ΠΈΡ Π½Π° ΠΌΠΎΡΡΠΎΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΡΠΊΠ·ΠΎΠΊΡΠΈΠ½Π½ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ ΠΊΡΡΡ. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΡΡ Π½Π° 20 ΠΊΡΡΡΠ°Ρ
, ΠΊΠΎΡΠΎΡΡΠ΅ Π±ΡΠ»ΠΈ ΡΠ°Π·Π΄Π΅Π»Π΅Π½Ρ Π½Π° 2 Π³ΡΡΠΏΠΏΡ ΠΏΠΎ 10 ΠΊΡΡΡ. Π ΠΏΠ΅ΡΠ²ΡΡ Π³ΡΡΠΏΠΏΡ Π²Ρ
ΠΎΠ΄ΠΈΠ»ΠΈ ΠΊΡΡΡΡ Π½Π° Π³ΠΈΠΏΠΎΠΊΠ°Π»ΠΎΡΠΈΠΉΠ½ΠΎΠΌ ΠΏΠΈΡΠ°Π½ΠΈΠΈ (57,4 ΠΊΠ°Π»ΠΎΡΠΈΠΉ Π² ΡΡΡΠΊΠΈ). ΠΠΈΠ²ΠΎΡΠ½ΡΠ΅ Π³ΡΡΠΏΠΏΡ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ ΡΠ±Π°Π»Π°Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΠΏΠΈΡΠ°Π½ΠΈΠ΅ (104,5 ΠΊΠ°Π»ΠΎΡΠΈΠΉ). ΠΡΠΈ Π±ΠΈΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈΡΡ ΡΡΠΎΠ²Π½ΠΈ Π»ΠΈΠΏΠ°Π·Ρ, Ξ±-Π°ΠΌΠΈΠ»Π°Π·Ρ ΠΈ Ξ±1-Π°Π½ΡΠΈΡΡΠΈΠΏΡΠΈΠ½Π° Π² ΡΡΠ²ΠΎΡΠΎΡΠΊΠ΅ ΠΊΡΠΎΠ²ΠΈ. ΠΠ½Π°Π»ΠΈΠ· Π²Π½Π΅ΡΠ½Π΅ΡΠ΅ΠΊΡΠ΅ΡΠΎΡΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ Ρ ΠΊΡΡΡ ΠΏΠΎΠΊΠ°Π·Π°Π», ΡΡΠΎ Ρ 100% ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ Π³ΡΡΠΏΠΏΡ ΠΈΠΌΠ΅Π΅Ρ ΠΌΠ΅ΡΡΠΎ ΡΠΊΠ·ΠΎΠΊΡΠΈΠ½Π½Π°Ρ ΠΏΠ°Π½ΠΊΡΠ΅Π°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π΄ΠΈΡΡΡΠ½ΠΊΡΠΈΠΈ. ΠΡΡΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΡΡΠΎΠ²Π½Ρ Π»ΠΈΠΏΠ°Π·Ρ ΠΈ Ξ±-Π°ΠΌΠΈΠ»Π°Π·Ρ ΠΏΠΎΠ²ΡΡΠ΅Π½Ρ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π³ΡΡΠΏΠΏΠΎΠΉ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ, ΠΏΡΠΈ ΡΡΠΎΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ Ξ±1-Π°Π½ΡΠΈΡΡΠΈΠΏΡΠΈΠ½Π° ΡΠ½ΠΈΠΆΠ΅Π½. ΠΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ Π±ΠΈΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π² ΡΡΠ²ΠΎΡΠΎΡΠΊΠΈ ΠΊΡΠΎΠ²ΠΈ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ Π³ΡΡΠΏΠΏΡ ΡΠΊΠΎΡΠ΅Π΅ Π²ΡΠ΅Π³ΠΎ ΡΠ²Π»ΡΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ΠΌ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ Π³ΠΈΠΏΠ΅ΡΡΡΠΈΠΏΡΠΈΠ½Π΅ΠΌΠΈΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π° Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ Π°Π½ΡΠΈΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, Π° ΡΠ°ΠΊΠΆΠ΅ Π°ΠΊΡΠΈΠ²Π½ΡΠΌ ΠΏΠΎΡΡΠ΅Π±Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½ΡΡ
ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠΎΠ² ΠΏΡΠΎΡΠ΅Π°Π·. ΠΠΈΠΏΠ΅ΡΡΠ΅ΡΠΌΠ΅Π½ΡΠ΅ΠΌΠΈΡ Ρ ΠΊΡΡΡ 1-ΠΉ Π³ΡΡΠΏΠΏΡ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π°: ΡΡΠΈΠΌΡΠ»ΠΈΡΡΡΡΠΈΠΌ Π½Π΅ΠΉΡΠΎΠ³ΡΠΌΠΎΡΠ°Π»ΡΠ½ΡΠΌ Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ Π½Π° Π°ΡΠΈΠ½ΠΎΡΠΈΡΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ Β«Π²Π°Π³ΠΎΡΠΎΠ½ΠΈΠ΅ΠΉΒ», ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠ°Π½ΠΊΡΠ΅Π°ΡΠΈΡΠΎΠ², ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ΠΌ Β«ΡΠ΅Π½ΠΎΠΌΠ΅Π½Π° ΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΡΠ΅ΡΠΌΠ΅Π½ΡΠΎΠ²Β». ΠΠΈΠΏΠΎΠΊΠ°Π»ΠΎΡΠΈΠΉΠ½ΠΎΠ΅ ΠΏΠΈΡΠ°Π½ΠΈΠ΅ Π½Π΅Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΠ½ΠΎ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ Π½Π° ΡΠ°Π±ΠΎΡΡ ΡΠΊΠ·ΠΎΠΊΡΠΈΠ½Π½ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ ΠΊΡΡΡ, Π²ΡΠ·ΡΠ²Π°Ρ Π΅Π΅ Π³ΠΈΠΏΠ΅ΡΡΡΠ½ΠΊΡΠΈΡ, Π½Π° ΡΡΠΎ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠ²Π½Ρ ΡΠ΅ΡΠΌΠ΅Π½ΡΠΎΠ² Π² ΠΊΡΠΎΠ²ΠΈ. ΠΠΎΡΠ»Π΅ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ Π³ΠΈΠΏΠ΅ΡΡΡΠΈΠΏΡΠΈΠ½Π΅ΠΌΠΈΠΈ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ ΠΈΡΡΠΎΡΠ΅Π½ΠΈΠ΅ Π°Π½ΡΠΈΠΏΡΠΎΡΠ΅Π°Π·Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΠΈΠ½ΡΠΎΠΊΡΠΈΠΊΠ°ΡΠΈΠ΅ΠΉ ΠΈ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ Π°ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ°ΠΌΠΈ ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ°. ΠΠ΅ΡΠ±Π°Π»Π°Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΡΠ°ΠΊΡΠΎΡ ΡΠΈΡΠΊΠ° ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
ΠΈ ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΉ ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ Π²ΠΎΠ²Π»Π΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π΄ΡΡΠ³ΠΈΡ
ΡΠΈΡΡΠ΅ΠΌ ΠΈ ΠΎΡΠ³Π°Π½ΠΎΠ² Π² ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΡΠΎΡΠ΅ΡΡ.Introduction. The urgent problems of the modern world are diseases of the digestive and endocrine system, namely, diseases of the pancreas (P). The number of patients with pancreas pathology is steadily increasing, moreover now there is a tendency towards the growth of pancreatic diseases in children. It has been reliably known that when the correlation of the concentration of nutrients in the blood changes, the risk of pancreatic diseases increases. Scientists suggest that dysfermentoses and other metabolic disorders of the pancreas can develop because of malnutrition. The aim of the study is to elucidate the effect of hypocaloric nutrition on the morphofunctional state of the exocrine portion of the pancreas in rats. Materials and methods. The experiment was carried out on 20 rats, divided into 2 groups of 10 rats in each. The group 1 included rats kept on hypocaloric diet (57.4 calories per day). This group was exposed to modeled alimentary protein deficiency. The animals of the control group (group 2) received a balanced diet (104.5 calories per day). In a biochemical study, a spectrometric method was used to assess the levels of lipase and Ξ±amylase in blood serum, and an immunoturbidimetric method for determining the level of Ξ±1-antitrypsin. All the obtained digital data were processed by the single-factor analysis of variance. All procedures on animals, as well as the removal of animals from the experiment by decapitation, were performed under anesthesia using thiopental anesthesia in accordance with national generally accepted ethical principles. Results of research. Changes in the caloric content of the ration of animals caused morphological changes in the pancreas in the rats of the main group that probably contributed to functional changes in the disturbance of the secretory activity of the pancreas. Analysis of the exocrine activity of the pancreas in rats has shown that 100% of the animals in the group 1 demonstrate a deviation of the level of enzyme from the normative values that indicates exocrine pancreatic dysfunction. Such biochemical changes in blood serum of the animals of the main group are most likely a consequence of prolonged hypertrypsinemia, which is caused by insufficient activity of the blood plasma antiproteinase system due to protein deficiency in the diet, as well as active consumption of plasma inhibitors. Hyperenzymemia in rats receiving hypocaloric nutrition is probably due to a stimulating neurohumoral effect on the acinocytes, for example "vagotonia," and damage to pancreatic cells or the consequence of the "enzyme evasion phenomenon". Conclusions. Hypocaloric nutrition negatively affects the function of the exocrine part of the pancreas, causing its hyperfunctioning, as indicated by an increase in the level of enzymes. Due to the long-term hypertrypsinemia, the antiprotease system is depleted, causing intoxication and damage cells of the body by the active enzymes of the pancreas. Unbalanced nutrition is a risk factor for the pathology of the pancreas with subsequent involvement of other systems and organs in the pathological process