2,061 research outputs found

    On the applicability of the Hasselmann kinetic equation to the Phillips spectrum

    Full text link
    We investigate applicability of the Hasselmann kinetic equation to the spectrum of surface gravity waves at different levels of nonlinearity in the system, which is measured as average steepness. It is shown that even in the case of relatively high average steepness, when Phillips spectrum is present in the system, the spectral lines are still very narrow, at least in the region of direct cascade spectrum. It allows us to state that even in the case of Phillips spectrum the kinetic equation can be applied to the description of the ensembles of ocean waves.Comment: 9 pages, 24 figure

    Coexistence of Weak and Strong Wave Turbulence in a Swell Propagation

    Full text link
    By performing two parallel numerical experiments -- solving the dynamical Hamiltonian equations and solving the Hasselmann kinetic equation -- we examined the applicability of the theory of weak turbulence to the description of the time evolution of an ensemble of free surface waves (a swell) on deep water. We observed qualitative coincidence of the results. To achieve quantitative coincidence, we augmented the kinetic equation by an empirical dissipation term modelling the strongly nonlinear process of white-capping. Fitting the two experiments, we determined the dissipation function due to wave breaking and found that it depends very sharply on the parameter of nonlinearity (the surface steepness). The onset of white-capping can be compared to a second-order phase transition. This result corroborates with experimental observations by Banner, Babanin, Young.Comment: 5 pages, 5 figures, Submitted in Phys. Rev. Letter

    Weak Turbulent Kolmogorov Spectrum for Surface Gravity Waves

    Full text link
    We study the long-time evolution of gravity waves on deep water exited by the stochastic external force concentrated in moderately small wave numbers. We numerically implement the primitive Euler equations for the potential flow of an ideal fluid with free surface written in canonical variables, using expansion of the Hamiltonian in powers of nonlinearity of up to fourth order terms. We show that due to nonlinear interaction processes a stationary energy spectrum close to ∣k∣∼k−7/2|k| \sim k^{-7/2} is formed. The observed spectrum can be interpreted as a weak-turbulent Kolmogorov spectrum for a direct cascade of energy.Comment: 4 pages, 5 figure

    Numerical simulation of surface waves instability on a discrete grid

    Full text link
    We perform full-scale numerical simulation of instability of weakly nonlinear waves on the surface of deep fluid. We show that the instability development leads to chaotization and formation of wave turbulence. We study instability both of propagating and standing waves. We studied separately pure capillary wave unstable due to three-wave interactions and pure gravity waves unstable due to four-wave interactions. The theoretical description of instabilities in all cases is included into the article. The numerical algorithm used in these and many other previous simulations performed by authors is described in details.Comment: 47 pages, 40 figure
    • …
    corecore