5 research outputs found
ΠΠΎΠ²ΡΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΠ΅ ΠΠΠ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΡΡ ΡΠΈΠ»Π°ΡΡΠ°Π½ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΎΠ²
Objectives. Biologically active polymeric surfactants are a new promising class of macromolecules that can find application in medicine, cosmetology, and agriculture. In this study, a number of new biologically active amphiphilic polymers based on branched silatrane-containing polyesters and polyethers were obtained, and their surface-active properties were investigated.Methods. The branched polymers were represented by polyethers and polyesters, obtained respectively via the anionic polymerization of 1,2-epoxypropanol or a combination of equilibrium polycondensation and ring opening polymerization. The polymers were modified with 3-isocyanopropylsilatrane and trimethylethoxysilane to obtain the amphiphilic compounds containing silatrane groups bonded to the polymer backbone by the urethane bond. The structure of the synthesized polymer silatranes was confirmed via nuclear magnetic resonance spectroscopy and gel permeation chromatography. The surface active properties of all the copolymers obtained were investigated in connection with their obvious amphiphilicity. In particular, the formation of micelles in aqueous solutions is such a property. The critical micelle concentrations were determined by a method of quenching the fluorescence of the polymers.Results. It was shown that the values of the critical micelle concentrations and the hydrophilic-lipophilic balance values of polymers determined by the Griffin equation correlate well with each other. A linear relationship between the hydrophilic-lipophilic balance and the critical micelle concentrations was established. At the same time, polyether-based polymers generally showed higher critical micelle concentrations than polyester-based polymers, although the hydrophilic-lipophilic balance values for polymers of different series, but with close degrees of substitution, were close. It was found that the use of all synthesized polymers as stabilizers of direct and reverse emulsions leads to an increase in the aggregative stability of both types of emulsions. The stability of emulsions depended both on the degree of substitution of peripheral hydroxyl groups of polymers by silatranes and on the molecular weight and structure of the branched block of polymers. The stability of direct emulsions increased for all polymers, while that of inverse emulsions decreased with an increasing degree of substitution of hydroxyl groups by silatranes. The increase of the branched block molecular weight led to an increase of droplet sizes for both direct and inverse emulsions. The smallest droplet size for direct and inverse emulsions was obtained using polymers with low molecular weight branched polyester blocks as surfactants.Conclusions. The results obtained prove the possibility of creating polymer surfactants containing silatrane groups. By varying the structure of the polymer, its molecular weight and the degree of substitution of peripheral functional groups, it is possible to obtain surfactants with desired surface properties.Π¦Π΅Π»ΠΈ. ΠΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈ Π°ΠΊΡΠΈΠ²Π½ΡΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΠ΅ ΠΠΠ ΡΠ²Π»ΡΡΡΡΡ Π½ΠΎΠ²ΡΠΌ ΠΌΠ½ΠΎΠ³ΠΎΠΎΠ±Π΅ΡΠ°ΡΡΠΈΠΌ ΠΊΠ»Π°ΡΡΠΎΠΌ ΠΌΠ°ΠΊΡΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ», ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠ³ΡΡ Π½Π°ΠΉΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² ΠΌΠ΅Π΄ΠΈΡΠΈΠ½Π΅, ΠΊΠΎΡΠΌΠ΅ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ, ΡΠ΅Π»ΡΡΠΊΠΎΠΌ Ρ
ΠΎΠ·ΡΠΉΡΡΠ²Π΅. Π Π΄Π°Π½Π½ΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ Π±ΡΠ» ΠΏΠΎΠ»ΡΡΠ΅Π½ ΡΡΠ΄ Π½ΠΎΠ²ΡΡ
Π°ΠΌΡΠΈΡΠΈΠ»ΡΠ½ΡΡ
ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΡΡ
ΡΠΈΠ»Π°ΡΡΠ°Π½-ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΎΠ² ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΠΈΡ
ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΠΎ-Π°ΠΊΡΠΈΠ²Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π°.ΠΠ΅ΡΠΎΠ΄Ρ. Π Π°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΡΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΡ Π±ΡΠ»ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΠΏΡΠΎΡΡΡΠΌΠΈ ΠΈ ΡΠ»ΠΎΠΆΠ½ΡΠΌΠΈ ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠ°ΠΌΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ Π°Π½ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ 1,2-ΡΠΏΠΎΠΊΡΠΈΠΏΡΠΎΠΏΠ°Π½ΠΎΠ»Π° Π»ΠΈΠ±ΠΎ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠ΅ΠΉ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠ½ΠΎΠΉ ΠΏΠΎΠ»ΠΈΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΈΠΈ ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ Ρ ΡΠ°ΡΠΊΡΡΡΠΈΠ΅ΠΌ ΡΠΈΠΊΠ»Π°. ΠΠ»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π°ΠΌΡΠΈΡΠΈΠ»ΡΠ½ΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΡΠΈΠ»Π°ΡΡΠ°Π½ΠΎΠ²ΡΠ΅ Π³ΡΡΠΏΠΏΡ, ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΠΌ ΠΊΠ°ΡΠΊΠ°ΡΠΎΠΌ ΡΡΠ΅ΡΠ°Π½ΠΎΠ²ΠΎΠΉ ΡΠ²ΡΠ·ΡΡ, ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΡ Π±ΡΠ»ΠΈ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Ρ 3-ΠΈΠ·ΠΎΡΠΈΠ°Π½ΠΎΠΏΡΠΎΠΏΠΈΠ»ΡΠΈΠ»Π°ΡΡΠ°Π½ΠΎΠΌ ΠΈ ΡΡΠΈΠΌΠ΅ΡΠΈΠ»ΡΡΠΎΠΊΡΠΈΡΠΈΠ»Π°Π½ΠΎΠΌ. Π‘ΡΡΡΠΊΡΡΡΠ° ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ
ΡΠΈΠ»Π°ΡΡΠ°Π½ΠΎΠ² Π±ΡΠ»Π° ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½Π° ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ Π―ΠΠ -ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ ΠΈ Π³Π΅Π»Ρ-ΠΏΡΠΎΠ½ΠΈΠΊΠ°ΡΡΠ΅ΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ. ΠΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΠΎ-Π°ΠΊΡΠΈΠ²Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π²ΡΠ΅Ρ
ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² Π±ΡΠ»ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ Π² ΡΠ²ΡΠ·ΠΈ Ρ ΠΈΡ
ΠΎΡΠ΅Π²ΠΈΠ΄Π½ΠΎΠΉ Π°ΠΌΡΠΈΡΠΈΠ»ΡΠ½ΠΎΡΡΡΡ, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, ΡΠ°ΠΊΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠΈΡΠ΅Π»Π» Π² Π²ΠΎΠ΄Π½ΡΡ
ΡΠ°ΡΡΠ²ΠΎΡΠ°Ρ
. ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ Π³Π°ΡΠ΅Π½ΠΈΡ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² Π±ΡΠ»ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ ΠΌΠΈΡΠ΅Π»Π»ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ (ΠΠΠ).Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΠΠ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠ΅ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΡΠΈΡΡΠΈΠ½Π° Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π³ΠΈΠ΄ΡΠΎΡΠΈΠ»ΡΠ½ΠΎ-Π»ΠΈΠΏΠΎΡΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ Π±Π°Π»Π°Π½ΡΠ° (ΠΠΠ) Π΄Π»Ρ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² ΠΊΠΎΡΡΠ΅Π»ΠΈΡΡΡΡ, ΠΏΡΠΈ ΡΡΠΎΠΌ Π±ΡΠ»Π° ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΊΠ°Π·Π°Π½Π½ΡΠΌΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Π°ΠΌΠΈ. ΠΠΎΠ»ΠΈΠΌΠ΅ΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΡΠΎΡΡΡΡ
ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΎΠ² Π² ΡΠ΅Π»ΠΎΠΌ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π»ΠΈ Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΠΠ, ΡΠ΅ΠΌ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ»ΠΎΠΆΠ½ΡΡ
ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΎΠ², Ρ
ΠΎΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΠΠ Π΄Π»Ρ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² ΡΠ°Π·Π½ΡΡ
ΡΠ΅ΡΠΈΠΉ, Π½ΠΎ Ρ Π±Π»ΠΈΠ·ΠΊΠΈΠΌΠΈ ΡΡΠ΅ΠΏΠ΅Π½ΡΠΌΠΈ Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π±ΡΠ»ΠΈ Π±Π»ΠΈΠ·ΠΊΠΈ. ΠΡΠ»ΠΎ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ, ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΡΠ΅Ρ
ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·Π°ΡΠΎΡΠΎΠ² ΠΏΡΡΠΌΡΡ
ΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΡΡ
ΡΠΌΡΠ»ΡΡΠΈΠΉ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ Π°Π³ΡΠ΅Π³Π°ΡΠΈΠ²Π½ΠΎΠΉ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ ΡΠΌΡΠ»ΡΡΠΈΠΉ ΠΎΠ±ΠΎΠΈΡ
ΡΠΈΠΏΠΎΠ². Π£ΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΡ ΡΠΌΡΠ»ΡΡΠΈΠΉ Π·Π°Π²ΠΈΡΠ΅Π»Π° ΠΊΠ°ΠΊ ΠΎΡ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΡΠ΅ΡΠΈΠΉΠ½ΡΡ
Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ»ΡΠ½ΡΡ
Π³ΡΡΠΏΠΏ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² ΡΠΈΠ»Π°ΡΡΠ°Π½Π°ΠΌΠΈ, ΡΠ°ΠΊ ΠΈ ΠΎΡ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡΡ ΠΈ ΡΡΡΠΎΠ΅Π½ΠΈΡ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π±Π»ΠΎΠΊΠ° ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ². ΠΠ»Ρ Π²ΡΠ΅Ρ
ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΡ ΠΏΡΡΠΌΡΡ
ΡΠΌΡΠ»ΡΡΠΈΠΉ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π»Π°, Π° ΠΎΠ±ΡΠ°ΡΠ½ΡΡ
ΡΠΌΡΠ»ΡΡΠΈΠΉ β ΡΠ½ΠΈΠΆΠ°Π»Π°ΡΡ Ρ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ»ΡΠ½ΡΡ
Π³ΡΡΠΏΠΏ ΡΠΈΠ»Π°ΡΡΠ°Π½Π°ΠΌΠΈ. Π‘ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡΡ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π±Π»ΠΎΠΊΠ° ΡΠ°Π·ΠΌΠ΅ΡΡ ΠΊΠ°ΠΏΠ΅Π»Ρ ΠΊΠ°ΠΊ ΠΏΡΡΠΌΡΡ
, ΡΠ°ΠΊ ΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΡΡ
ΡΠΌΡΠ»ΡΡΠΈΠΉ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π»ΠΈΡΡ. ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΡΠ°Π·ΠΌΠ΅Ρ ΠΊΠ°ΠΏΠ΅Π»Ρ ΠΏΡΡΠΌΠΎΠΉ ΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΉ ΡΠΌΡΠ»ΡΡΠΈΠΈ Π±ΡΠ» ΠΏΠΎΠ»ΡΡΠ΅Π½ ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΠΠ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² Ρ Π½ΠΈΠ·ΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΠΌΠΈ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΡΠΌΠΈ Π±Π»ΠΎΠΊΠ°ΠΌΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ»ΠΎΠΆΠ½ΡΡ
ΡΡΠΈΡΠΎΠ².ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ
ΠΠΠ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΡΠΈΠ»Π°ΡΡΠ°Π½ΠΎΠ²ΡΠ΅ Π³ΡΡΠΏΠΏΡ. ΠΠ°ΡΡΠΈΡΡΡ ΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ°, Π΅Π³ΠΎ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ ΠΌΠ°ΡΡΡ ΠΈ ΡΡΠ΅ΠΏΠ΅Π½Ρ Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΡΠ΅ΡΠΈΠΉΠ½ΡΡ
ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
Π³ΡΡΠΏΠΏ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΠΠ Ρ Π·Π°Π΄Π°Π½Π½ΡΠΌΠΈ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΡΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ
Novel polymer surfactants based on the branched silatrane-containing polyesters and polyethers
Objectives. Biologically active polymeric surfactants are a new promising class of macromolecules that can find application in medicine, cosmetology, and agriculture. In this study, a number of new biologically active amphiphilic polymers based on branched silatrane-containing polyesters and polyethers were obtained, and their surface-active properties were investigated.Methods. The branched polymers were represented by polyethers and polyesters, obtained respectively via the anionic polymerization of 1,2-epoxypropanol or a combination of equilibrium polycondensation and ring opening polymerization. The polymers were modified with 3-isocyanopropylsilatrane and trimethylethoxysilane to obtain the amphiphilic compounds containing silatrane groups bonded to the polymer backbone by the urethane bond. The structure of the synthesized polymer silatranes was confirmed via nuclear magnetic resonance spectroscopy and gel permeation chromatography. The surface active properties of all the copolymers obtained were investigated in connection with their obvious amphiphilicity. In particular, the formation of micelles in aqueous solutions is such a property. The critical micelle concentrations were determined by a method of quenching the fluorescence of the polymers.Results. It was shown that the values of the critical micelle concentrations and the hydrophilic-lipophilic balance values of polymers determined by the Griffin equation correlate well with each other. A linear relationship between the hydrophilic-lipophilic balance and the critical micelle concentrations was established. At the same time, polyether-based polymers generally showed higher critical micelle concentrations than polyester-based polymers, although the hydrophilic-lipophilic balance values for polymers of different series, but with close degrees of substitution, were close. It was found that the use of all synthesized polymers as stabilizers of direct and reverse emulsions leads to an increase in the aggregative stability of both types of emulsions. The stability of emulsions depended both on the degree of substitution of peripheral hydroxyl groups of polymers by silatranes and on the molecular weight and structure of the branched block of polymers. The stability of direct emulsions increased for all polymers, while that of inverse emulsions decreased with an increasing degree of substitution of hydroxyl groups by silatranes. The increase of the branched block molecular weight led to an increase of droplet sizes for both direct and inverse emulsions. The smallest droplet size for direct and inverse emulsions was obtained using polymers with low molecular weight branched polyester blocks as surfactants.Conclusions. The results obtained prove the possibility of creating polymer surfactants containing silatrane groups. By varying the structure of the polymer, its molecular weight and the degree of substitution of peripheral functional groups, it is possible to obtain surfactants with desired surface properties