6 research outputs found

    Permutation Entropy and Signal Energy Increase the Accuracy of Neuropathic Change Detection in Needle EMG

    Get PDF
    Background and Objective. Needle electromyography can be used to detect the number of changes and morphological changes in motor unit potentials of patients with axonal neuropathy. General mathematical methods of pattern recognition and signal analysis were applied to recognize neuropathic changes. This study validates the possibility of extending and refining turns-amplitude analysis using permutation entropy and signal energy. Methods. In this study, we examined needle electromyography in 40 neuropathic individuals and 40 controls. The number of turns, amplitude between turns, signal energy, and “permutation entropy” were used as features for support vector machine classification. Results. The obtained results proved the superior classification performance of the combinations of all of the above-mentioned features compared to the combinations of fewer features. The lowest accuracy from the tested combinations of features had peak-ratio analysis. Conclusion. Using the combination of permutation entropy with signal energy, number of turns and mean amplitude in SVM classification can be used to refine the diagnosis of polyneuropathies examined by needle electromyography

    Towards an inclusive Parkinson's screening system

    No full text
    © 2014 IEEE.In this study, brain, and gait dynamic information were combined and used for diagnosis and monitoring of Parkinson's disease (the most important Neurodegenerative Disorder). Analysis of the information corresponding to a prescribed movement involving tremor, and the related changes in brain connectivity is novel and original. Analytically, developing a space-time nonlinear adaptive system which fuses brain and gait information algorithmically is proposed here for the first time. The overall dynamic system will be constrained by the clinical impressions of the patient symptoms embedded in a knowledge-based system. The entire complex constrained problem were solved to enable a powerful model for recognition and monitoring of Parkinson's disease and establishing appropriate rules for its clinical following up

    Towards an inclusive Parkinson's screening system

    No full text
    © 2014 IEEE.In this study, brain, and gait dynamic information were combined and used for diagnosis and monitoring of Parkinson's disease (the most important Neurodegenerative Disorder). Analysis of the information corresponding to a prescribed movement involving tremor, and the related changes in brain connectivity is novel and original. Analytically, developing a space-time nonlinear adaptive system which fuses brain and gait information algorithmically is proposed here for the first time. The overall dynamic system will be constrained by the clinical impressions of the patient symptoms embedded in a knowledge-based system. The entire complex constrained problem were solved to enable a powerful model for recognition and monitoring of Parkinson's disease and establishing appropriate rules for its clinical following up
    corecore