5,233 research outputs found

    High energy processes in the vicinity of the Kerr's black hole horizon

    Full text link
    Two particle collisions close to the horizon of the rotating nonextremal black hole are analyzed. It is shown that high energy of the order of the Grand Unification scale in the centre of mass of colliding particles can be obtained when there is a multiple collision - the particle from the accretion disc gets the critical momentum in first collision with the other particle close to the horizon and then there is a second collision of the critical particle with the ordinary one. High energy occurs due to a great relative velocity of two particles and a large Lorentz factor. The dependence of the relative velocity on the distance to horizon is analyzed, the time of movement from the point in the accretion disc to the point of scattering with large energy as well as the time of back movement to the Earth are calculated. It is shown that they have reasonable order.Comment: 13 pages, 2 figures, added some formulas and one referenc

    Constrained Reductions of 2D dispersionless Toda Hierarchy, Hamiltonian Structure and Interface Dynamics

    Full text link
    Finite-dimensional reductions of the 2D dispersionless Toda hierarchy, constrained by the ``string equation'' are studied. These include solutions determined by polynomial, rational or logarithmic functions, which are of interest in relation to the ``Laplacian growth'' problem governing interface dynamics. The consistency of such reductions is proved, and the Hamiltonian structure of the reduced dynamics is derived. The Poisson structure of the rationally reduced dispersionless Toda hierarchies is also derivedComment: 18 pages LaTex, accepted to J.Math.Phys, Significantly updated version of the previous submissio

    Integrable Systems and Metrics of Constant Curvature

    Full text link
    In this article we present a Lagrangian representation for evolutionary systems with a Hamiltonian structure determined by a differential-geometric Poisson bracket of the first order associated with metrics of constant curvature. Kaup-Boussinesq system has three local Hamiltonian structures and one nonlocal Hamiltonian structure associated with metric of constant curvature. Darboux theorem (reducing Hamiltonian structures to canonical form ''d/dx'' by differential substitutions and reciprocal transformations) for these Hamiltonian structures is proved

    Hydrodynamic chains and a classification of their Poisson brackets

    Full text link
    Necessary and sufficient conditions for an existence of the Poisson brackets significantly simplify in the Liouville coordinates. The corresponding equations can be integrated. Thus, a description of local Hamiltonian structures is a first step in a description of integrable hydrodynamic chains. The concept of MM Poisson bracket is introduced. Several new Poisson brackets are presented

    A note on condensations of Cp(X)C_p(X) onto compacta

    Get PDF
    summary:A condensation is a one-to-one continuous mapping onto. It is shown that the space Cp(X)C_p(X) of real-valued continuous functions on XX in the topology of pointwise convergence very often cannot be condensed onto a compact Hausdorff space. In particular, this is so for any non-metrizable Eberlein compactum XX (Theorem 19). However, there exists a non-metrizable compactum XX such that Cp(X)C_p(X) condenses onto a metrizable compactum (Theorem 10). Several curious open problems are formulated

    Two-Photon Excitation of Low-Lying Electronic Quadrupole States in Atomic Clusters

    Full text link
    A simple scheme of population and detection of low-lying electronic quadrupole modes in free small deformed metal clusters is proposed. The scheme is analyzed in terms of the TDLDA (time-dependent local density approximation) calculations. As test case, the deformed cluster Na11+Na^+_{11} is considered. Long-living quadrupole oscillations are generated via resonant two-photon (two-dipole) excitation and then detected through the appearance of satellites in the photoelectron spectra generated by a probe pulse. Femtosecond pump and probe pulses with intensities I=2⋅1010−2⋅1011W/cm2I = 2\cdot 10^{10} - 2\cdot 10^{11} W/cm^2 and pulse duration T=200−500T = 200 - 500 fs are found to be optimal. The modes of interest are dominated by a single electron-hole pair and so their energies, being combined with the photoelectron data for hole states, allow to gather new information about mean-field spectra of valence electrons in the HOMO-LUMO region. Besides, the scheme allows to estimate the lifetime of electron-hole pairs and hence the relaxation time of electronic energy into ionic heat.Comment: 4 pages, 4 figure
    • …
    corecore