10 research outputs found

    Structures of Spherical Viral Capsids as Quasicrystalline Tilings

    Full text link
    Spherical viral shells with icosahedral symmetry have been considered as quasicrystalline tilings. Similarly to known Caspar-Klug quasi-equivalence theory, the presented approach also minimizes the number of conformations necessary for the protein molecule bonding with its neighbors in the shell, but is based on different geometrical principles. It is assumed that protein molecule centers are located at vertices of tiles with identical edges, and the number of different tile types is minimal. Idealized coordinates of nonequivalent by symmetry protein positions in six various capsid types are obtained. The approach describes in a uniform way both the structures satisfying the well-known Caspar-Klug geometrical model and the structures contradicting this model.Comment: 8 pages, 2 figures; This version was published in Physics of the Solid State, 2015, Vol. 57, No.4, pp. 810-81

    Chiral Quasicrystalline Order and Dodecahedral Geometry in Exceptional Families of Viruses

    Full text link
    On the example of exceptional families of viruses we i) show the existence of a completely new type of matter organization in nanoparticles, in which the regions with a chiral pentagonal quasicrystalline order of protein positions are arranged in a structure commensurate with the spherical topology and dodecahedral geometry, ii) generalize the classical theory of quasicrystals (QCs) to explain this organization, and iii) establish the relation between local chiral QC order and nonzero curvature of the dodecahedral capsid faces.Comment: 8 pages, 3 figure
    corecore