1,077 research outputs found

    Coorbital Satellites of Saturn: Congenital Formation

    Full text link
    Saturn is the only known planet to have coorbital satellite systems. In the present work we studied the process of mass accretion as a possible mechanism for coorbital satellites formation. The system considered is composed of Saturn, a proto-satellite and a cloud of planetesimals distributed in the coorbital region around a triangular Lagrangian point. The adopted relative mass for the proto-satellite was 10^-6 of Saturn's mass and for each planetesimal of the cloud three cases of relative mass were considered, 10^-14, 10^-13 and 10^-12 masses of Saturn. In the simulations each cloud of planetesimal was composed of 10^3, 5 x 10^3 or 10^4 planetesimals. The results of the simulations show the formation of coorbital satellites with relative masses of the same order of those found in the saturnian system (10^-13 - 10^-9). Most of them present horseshoe type orbits, but a significant part is in tadpole orbit around L_4 or L_5. Therefore, the results indicate that this is a plausible mechanism for the formation of coorbital satellites.Comment: 10 pages, 9 figures, 4 table

    Terrestrial Planet Formation in a protoplanetary disk with a local mass depletion: A successful scenario for the formation of Mars

    Full text link
    Models of terrestrial planet formation for our solar system have been successful in producing planets with masses and orbits similar to those of Venus and Earth. However, these models have generally failed to produce Mars-sized objects around 1.5 AU. The body that is usually formed around Mars' semimajor axis is, in general, much more massive than Mars. Only when Jupiter and Saturn are assumed to have initially very eccentric orbits (e ∼\sim 0.1), which seems fairly unlikely for the solar system, or alternately, if the protoplanetary disk is truncated at 1.0 AU, simulations have been able to produce Mars-like bodies in the correct location. In this paper, we examine an alternative scenario for the formation of Mars in which a local depletion in the density of the protosolar nebula results in a non-uniform formation of planetary embryos and ultimately the formation of Mars-sized planets around 1.5 AU. We have carried out extensive numerical simulations of the formation of terrestrial planets in such a disk for different scales of the local density depletion, and for different orbital configurations of the giant planets. Our simulations point to the possibility of the formation of Mars-sized bodies around 1.5 AU, specifically when the scale of the disk local mass-depletion is moderately high (50-75%) and Jupiter and Saturn are initially in their current orbits. In these systems, Mars-analogs are formed from the protoplanetary materials that originate in the regions of disk interior or exterior to the local mass-depletion. Results also indicate that Earth-sized planets can form around 1 AU with a substantial amount of water accreted via primitive water-rich planetesimals and planetary embryos. We present the results of our study and discuss their implications for the formation of terrestrial planets in our solar system.Comment: Accepted for publication in The Astrophysical Journa

    Integrable discretizations of derivative nonlinear Schroedinger equations

    Full text link
    We propose integrable discretizations of derivative nonlinear Schroedinger (DNLS) equations such as the Kaup-Newell equation, the Chen-Lee-Liu equation and the Gerdjikov-Ivanov equation by constructing Lax pairs. The discrete DNLS systems admit the reduction of complex conjugation between two dependent variables and possess bi-Hamiltonian structure. Through transformations of variables and reductions, we obtain novel integrable discretizations of the nonlinear Schroedinger (NLS), modified KdV (mKdV), mixed NLS, matrix NLS, matrix KdV, matrix mKdV, coupled NLS, coupled Hirota, coupled Sasa-Satsuma and Burgers equations. We also discuss integrable discretizations of the sine-Gordon equation, the massive Thirring model and their generalizations.Comment: 24 pages, LaTeX2e (IOP style), final versio

    Classification of integrable Volterra type lattices on the sphere. Isotropic case

    Full text link
    The symmetry approach is used for classification of integrable isotropic vector Volterra lattices on the sphere. The list of integrable lattices consists mainly of new equations. Their symplectic structure and associated PDE of vector NLS-type are discussed.Comment: 16 page

    Noncommutative Burgers Equation

    Get PDF
    We present a noncommutative version of the Burgers equation which possesses the Lax representation and discuss the integrability in detail. We find a noncommutative version of the Cole-Hopf transformation and succeed in the linearization of it. The linearized equation is the (noncommutative) diffusion equation and exactly solved. We also discuss the properties of some exact solutions. The result shows that the noncommutative Burgers equation is completely integrable even though it contains infinite number of time derivatives. Furthermore, we derive the noncommutative Burgers equation from the noncommutative (anti-)self-dual Yang-Mills equation by reduction, which is an evidence for the noncommutative Ward conjecture. Finally, we present a noncommutative version of the Burgers hierarchy by both the Lax-pair generating technique and the Sato's approach.Comment: 24 pages, LaTeX, 1 figure; v2: discussions on Ward conjecture, Sato theory and the integrability added, references added, version to appear in J. Phys.

    Multiresolution analysis of electronic structure: semicardinal and wavelet bases

    Full text link
    This article reviews recent developments in multiresolution analysis which make it a powerful tool for the systematic treatment of the multiple length-scales inherent in the electronic structure of matter. Although the article focuses on electronic structure, the advances described are useful for non-linear problems in the physical sciences in general. The new language and notations introduced are well- suited for both formal manipulations and the development of computer software using higher-level languages such as C++. The discussion is self-contained, and all needed algorithms are specified explicitly in terms of simple operators and illustrated with straightforward diagrams which show the flow of data. Among the reviewed developments is the construction of_exact_ multiresolution representations from extremely limited samples of physical fields in real space. This new and profound result is the critical advance in finally allowing systematic, all electron calculations to compete in efficiency with state-of-the-art electronic structure calculations which depend for their celerity upon freezing the core electronic degrees of freedom. This review presents the theory of wavelets from a physical perspective, provides a unified and self-contained treatment of non-linear couplings and physical operators and introduces a modern framework for effective single-particle theories of quantum mechanics.Comment: A "how-to from-scratch" book presently in press at Reviews of Modern Physics: 88 pages, 31 figures, 5 tables, 88 references. Significantly IMPROVED version, including (a) new diagrams illustrating algorithms; (b) careful proof-reading of equations and text; (c) expanded bibliography; (d) cosmetic changes including lists of figures and tables and a more reasonable font. Latest changes (Dec. 11, 1998): a more descriptive abstract, and minor lexicographical change

    O(N) methods in electronic structure calculations

    Full text link
    Linear scaling methods, or O(N) methods, have computational and memory requirements which scale linearly with the number of atoms in the system, N, in contrast to standard approaches which scale with the cube of the number of atoms. These methods, which rely on the short-ranged nature of electronic structure, will allow accurate, ab initio simulations of systems of unprecedented size. The theory behind the locality of electronic structure is described and related to physical properties of systems to be modelled, along with a survey of recent developments in real-space methods which are important for efficient use of high performance computers. The linear scaling methods proposed to date can be divided into seven different areas, and the applicability, efficiency and advantages of the methods proposed in these areas is then discussed. The applications of linear scaling methods, as well as the implementations available as computer programs, are considered. Finally, the prospects for and the challenges facing linear scaling methods are discussed.Comment: 85 pages, 15 figures, 488 references. Resubmitted to Rep. Prog. Phys (small changes
    • …
    corecore