287 research outputs found

    An experimental setup for high resolution 10.5 eV laser-based angle-resolved photoelectron spectroscopy using a time-of-flight electron analyzer

    Full text link
    We present an experimental setup for laser-based angle-resolved time-of-flight (LARTOF) photoemission. Using a picosecond pulsed laser, photons of energy 10.5 eV are generated through higher harmonic generation in xenon. The high repetition rate of the light source, variable between 0.2-8 MHz, enables high photoelectron count rates and short acquisition times. By using a Time-of-Flight (ToF) analyzer with angle-resolving capabilities electrons emitted from the sample within a circular cone of up to \pm15 degrees can be collected. Hence, simultaneous acquisition of photoemission data for a complete area of the Brillouin zone is possible. The current photon energy enables bulk sensitive measurements, high angular resolution and the resulting covered momentum space is large enough to enclose the entire Brillouin zone in cuprate high-Tc superconductors. Fermi edge measurements on polycrystalline Au shows an energy resolution better than 5 meV. Data from a test measurement of the Au(111) surface state is presented along with measurements of the Fermi surface of the high-Tc superconductor Bi2212.Comment: 9 pages, 7 figure

    Direct observation of decoupled Dirac states at the interface between topological and normal insulators

    Full text link
    Several proposed applications and exotic effects in topological insulators rely on the presence of helical Dirac states at the interface between a topological and a normal insulator. In the present work, we have used low-energy angle-resolved photoelectron spectroscopy to uncover and characterize the interface states of Bi2_2Se3_3 thin films and Bi2_2Te3_3/Bi2_2Se3_3 heterostuctures grown on Si(111). The results establish that Dirac fermions are indeed present at the topological-normal-insulator boundary and absent at the topological-topological-insulator interface. Moreover, it is demonstrated that band bending present within the topological-insulator films leads to a substantial separation of the interface and surface states in energy. These results pave the way for further studies and the realization of interface-related phenomena in topological-insulator thin-film heterostructures.Comment: 9 pages, 5 figure

    A spin- and angle-resolving photoelectron spectrometer

    Full text link
    A new type of hemispherical electron energy analyzer that permits angle and spin resolved photoelectron spectroscopy has been developed. The analyzer permits standard angle resolved spectra to be recorded with a two-dimensional detector in parallel with spin detection using a mini-Mott polarimeter. General design considerations as well as technical solutions are discussed and test results from the Au(111) surface state are presented

    Resonant photoelectron spectroscopy on CoO

    Get PDF
    Resonant photoelectron spectroscopy data from in situ cleaved CoO single crystals are presented. Valence band data collected at photon energies corresponding to Co 2p3/2 are discussed in comparison with a cluster model calculation and quantitative estimates of the model parameters are given. No valence band resonance is observed at the O 1s absorption threshold but the similarity between the observed Auger lines and those previously observed for NiO confirm the similarity between the O valence band states in the two materials

    The J_{eff}=1/2 insulator Sr3Ir2O7 studied by means of angle-resolved photoemission spectroscopy

    Full text link
    The low-energy electronic structure of the J_{eff}=1/2 spin-orbit insulator Sr3Ir2O7 has been studied by means of angle-resolved photoemission spectroscopy. A comparison of the results for bilayer Sr3Ir2O7 with available literature data for the related single-layer compound Sr2IrO4 reveals qualitative similarities and similar J_{eff}=1/2 bandwidths for the two materials, but also pronounced differences in the distribution of the spectral weight. In particuar, photoemission from the J_{eff}=1/2 states appears to be suppressed. Yet, it is found that the Sr3Ir2O7 data are in overall better agreement with band-structure calculations than the data for Sr2IrO4.Comment: 5 pages, 3 figure

    Nodal Landau Fermi-Liquid Quasiparticles in Overdoped La1.77_{1.77}Sr0.23_{0.23}CuO4_4

    Get PDF
    Nodal angle resolved photoemission spectra taken on overdoped La1.77_{1.77}Sr0.23_{0.23}CuO4_4 are presented and analyzed. It is proven that the low-energy excitations are true Landau Fermi-liquid quasiparticles. We show that momentum and energy distribution curves can be analyzed self-consistently without quantitative knowledge of the bare band dispersion. Finally, by imposing Kramers-Kronig consistency on the self-energy Σ\Sigma, insight into the quasiparticle residue is gained. We conclude by comparing our results to quasiparticle properties extracted from thermodynamic, magneto-resistance, and high-field quantum oscillation experiments on overdoped Tl2_2Ba2_2CuO6+δ_{6+\delta}.Comment: Accepted for publication in Phys. Rev.

    Magnetic Order in the 2D Heavy-Fermion System CePt2In7 studied by muSR

    Full text link
    The low-temperature microscopic magnetic properties of the quasi-2D heavyfermion compound, CePt2In7 are investigated by using a positive muon-spin rotation and relaxation (?muSR) technique. Clear evidence for the formation of a commensurate antiferromagnetic order below TN=5.40 K is presented. The magnetic order parameter is shown to fit well to a modified BSC gap-energy function in a strong-coupling scenario.Comment: Accepted in Journal of Physics: Conference Series (2014
    • …
    corecore