329 research outputs found
Hydrophosphination of Activated Alkenes by a Cobalt(I) Pincer Complex
Herein we report the synthesis of three heteroleptic first-row transition metal(II) complexes containing carbazolido NNN pincer ligands and conversion to the corresponding metal(I)-carbonyl complexes via a reductive carbonylation route. These complexes are precatalysts for the hydrophosphination of activated alkenes, affording a cobalt-catalysed hydrophosphination process that solely and selectively yields the ß addition (anti-Markovnikov) product. The scope of this transformation has been investigated using a variety of activated alkenes. Isolation and characterisation of substrate-coordinated intermediates reveal available coordination sites, which provide insight into the proposed catalytic cycle
Parametric localized modes in quadratic nonlinear photonic structures
We analyze two-color spatially localized modes formed by parametrically
coupled fundamental and second-harmonic fields excited at quadratic (or chi-2)
nonlinear interfaces embedded into a linear layered structure --- a
quasi-one-dimensional quadratic nonlinear photonic crystal. For a periodic
lattice of nonlinear interfaces, we derive an effective discrete model for the
amplitudes of the fundamental and second-harmonic waves at the interfaces (the
so-called discrete chi-2 equations), and find, numerically and analytically,
the spatially localized solutions --- discrete gap solitons. For a single
nonlinear interface in a linear superlattice, we study the properties of
two-color localized modes, and describe both similarities and differences with
quadratic solitons in homogeneous media.Comment: 9 pages, 8 figure
Nonlinear mirror based on cross-polarized wave generation
We present a new type of nonlinear mirror based on the generation of a cross-polarized wave through a nonresonant electronic third-order process. It is characterized by a reflection coefficient that depends on the input intensity. Its behavior results from the interference between the nonlinearly generated cross-polarized wave and a /2 phase-retarded wave. This setup has a lot of advantages: it does not require any phase matching, it is achromatic and suitable for femtosecond pulses, linear losses are easily adjustable, and the overall behavior is predictable. The device has been experimentally tested using BaF 2 and YVO 4 crystals. OCIS codes: 190.0190, 230.4320, 140.4050. Nonlinear mirrors (NLMs) are known to be used for mode-locking (ML) operation in solid-state lasers and also for other applications, e.g., for pulse reshaping and compression and contrast improvement. In general, NLMs can be divided into two groups. The first group is based on ͑3͒ effects: self-induced ellipse rotation in isotropic media, 1,2 the Kerr lens effect, 3 or interference effects in an external cavity with ͑3͒ media. © 2006 Optical Society of America ͑2͒ cascaded processes. 12 Here, we introduce a new type of NLM based on the generation of a linearly polarized wave cross polarized to the input one. The cross-polarized wave (XPW) generation effect is a four-wave mixing process that depends on the anisotropy of the ͑3͒ tensor. The scheme of the XPW-based NLM is shown i
Selective Reflection Spectroscopy on the UV Third Resonance Line of Cs : Simultaneous Probing of a van der Waals Atom-Surface Interaction Sensitive to Far IR Couplings and of Interatomic Collisions
We report on the analysis of FM selective reflection experiments on the
6S1/2->8P3/2 transition of Cs at 388 nm, and on the measurement of the surface
van der Waals interaction exerted by a sapphire interface on Cs(8P3/2). Various
improvements in the systematic fitting of the experiments have permitted to
supersede the major difficulty of a severe overlap of the hyperfine components,
originating on the one hand in a relatively small natural structure, and on the
other hand on a large pressure broadening imposed by the high atomic density
needed for the observation of selective reflection on a weak transition. The
strength of the van der Waals surface interaction is evaluated to be 7310
kHz.m3. An evaluation of the pressure shift of the transition is also
provided as a by-product of the measurement. We finally discuss the
significance of an apparent disagreement between the experimental measurement
of the surface interaction, and the theoretical value calculated for an
electromagnetic vacuum at a null temperature. The possible influence of the
thermal excitation of the surface is evoked, because, the dominant
contributions to the vW interaction for Cs(8P3/2) lie in the far infrared
range.Comment: submitted to Laser Physics - issue in the memory of Herbert Walther
Exploring the van der Waals Atom-Surface attraction in the nanometric range
The van der Waals atom-surface attraction, scaling as C3 z-3 for z the
atom-surface distance, is expected to be valid in the distance range 1-1000 nm,
covering 8-10 orders of magnitudes in the interaction energy. A Cs vapour
nanocell allows us to analyze the spectroscopic modifications induced by the
atom-surface attraction on the 6P3/2->6D5/2 transition. The measured C3 value
is found to be independent of the thickness in the explored range 40-130 nm,
and is in agreement with an elementary theoretical prediction. We also discuss
the specific interest of exploring short distances and large interaction
energy.Comment: to appear in Europhysics Letter
Inhibition of Y1 receptor signaling improves islet transplant outcome
Failure to secrete sufficient quantities of insulin is a pathological feature of type-1 and type-2 diabetes, and also reduces the success of islet cell transplantation. Here we demonstrate that Y1 receptor signaling inhibits insulin release in β-cells, and show that this can be pharmacologically exploited to boost insulin secretion. Transplanting islets with Y1 receptor deficiency accelerates the normalization of hyperglycemia in chemically induced diabetic recipient mice, which can also be achieved by short-term pharmacological blockade of Y1 receptors in transplanted mouse and human islets. Furthermore, treatment of non-obese diabetic mice with a Y1 receptor antagonist delays the onset of diabetes. Mechanistically, Y1 receptor signaling inhibits the production of cAMP in islets, which via CREB mediated pathways results in the down-regulation of several key enzymes in glycolysis and ATP production. Thus, manipulating Y1 receptor signaling in β-cells offers a unique therapeutic opportunity for correcting insulin deficiency as it occurs in the pathological state of type-1 diabetes as well as during islet transplantation.Islet transplantation is considered one of the potential treatments for T1DM but limited islet survival and their impaired function pose limitations to this approach. Here Loh et al. show that the Y1 receptor is expressed in β- cells and inhibition of its signalling, both genetic and pharmacological, improves mouse and human islet function.info:eu-repo/semantics/publishe
Higher-order nonlinear modes and bifurcation phenomena due to degenerate parametric four-wave mixing
We demonstrate that weak parametric interaction of a fundamental beam with
its third harmonic field in Kerr media gives rise to a rich variety of families
of non-fundamental (multi-humped) solitary waves. Making a comprehensive
comparison between bifurcation phenomena for these families in bulk media and
planar waveguides, we discover two novel types of soliton bifurcations and
other interesting findings. The later includes (i) multi-humped solitary waves
without even or odd symmetry and (ii) multi-humped solitary waves with large
separation between their humps which, however, may not be viewed as bound
states of several distinct one-humped solitons.Comment: 9 pages, 17 figures, submitted to Phys. Rev.
Comparative effectiveness of dipeptidyl peptidase-4 (DPP-4) inhibitors and human glucagon-like peptide-1 (GLP-1) analogue as add-on therapies to sulphonylurea among diabetes patients in the Asia-Pacific region: a systematic review
The prevalence of diabetes mellitus is rising globally, and it induces a substantial public health burden to the healthcare systems. Its optimal control is one of the most significant challenges faced by physicians and policy-makers. Whereas some of the established oral hypoglycaemic drug classes like biguanide, sulphonylureas, thiazolidinediones have been extensively used, the newer agents like dipeptidyl peptidase-4 (DPP-4) inhibitors and the human glucagon-like peptide-1 (GLP-1) analogues have recently emerged as suitable options due to their similar efficacy and favorable side effect profiles. These agents are widely recognized alternatives to the traditional oral hypoglycaemic agents or insulin, especially in conditions where they are contraindicated or unacceptable to patients. Many studies which evaluated their clinical effects, either alone or as add-on agents, were conducted in Western countries. There exist few reviews on their effectiveness in the Asia-Pacific region. The purpose of this systematic review is to address the comparative effectiveness of these new classes of medications as add-on therapies to sulphonylurea drugs among diabetic patients in the Asia-Pacific countries. We conducted a thorough literature search of the MEDLINE and EMBASE from the inception of these databases to August 2013, supplemented by an additional manual search using reference lists from research studies, meta-analyses and review articles as retrieved by the electronic databases. A total of nine randomized controlled trials were identified and described in this article. It was found that DPP-4 inhibitors and GLP-1 analogues were in general effective as add-on therapies to existing sulphonylurea therapies, achieving HbA1c reductions by a magnitude of 0.59–0.90% and 0.77–1.62%, respectively. Few adverse events including hypoglycaemic attacks were reported. Therefore, these two new drug classes represent novel therapies with great potential to be major therapeutic options. Future larger-scale research should be conducted among other Asia-Pacific region to evaluate their efficacy in other ethnic groups
Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials
Metal-free organic phosphorescent materials are attractive alternatives to the predominantly used organometallic phosphors but are generally dimmer and are relatively rare, as, without heavy-metal atoms, spin-orbit coupling is less efficient and phosphorescence usually cannot compete with radiationless relaxation processes. Here we present a general design rule and a method to effectively reduce radiationless transitions and hence greatly enhance phosphorescence efficiency of metal-free organic materials in a variety of amorphous polymer matrices, based on the restriction of molecular motions in the proximity of embedded phosphors. Covalent cross-linking between phosphors and polymer matrices via Diels-Alder click chemistry is devised as a method. A sharp increase in phosphorescence quantum efficiency is observed in a variety of polymer matrices with this method, which is ca. two to five times higher than that of phosphor-doped polymer systems having no such covalent linkage.ope
- …