30 research outputs found

    Leishmaniosis en un zorro (Cerdocyon thous) del Zoológico de la Ciudad de Corrientes (Argentina)

    Get PDF
    Burna, A.N.; Imhoff, O.; Montenegro, M.A.; Sánchez Negrette, M.; Catuogno, M.S.: Leishmaniosis en un zorro (Cerdocyon thous) del Zoológico de la Ciudad de Corrientes (Argentina). Rev. vet. 26: 1, 75-78, 2015

    Efecto de la diminacina en hámsteres inoculados con Leishmania chagasi

    Get PDF
    La leishmaniosis es una enfermedad causada por protozoarios del género Leishmania, que afecta al hombre y animales a través de la picadura de insectos infectados. La diminacina es una droga con actividad in vitro inhibitoria del crecimiento de Leishmania donovani; también ha sido utilizada para el tratamiento contra tripanosomosis y babesiosis. El objetivo del presente trabajo fue comprobar el efecto de diminacina in vivo como tratamiento ntileishmaniásico en hámsteres, y en caso afirmativo transpolarla como alternativa terapéutica para el control y posible erradicación de la leishmaniosis en caninos. Se utilizaron 26 hámsteres agrupados en cuatro lotes de 6-7 animales cada uno: (a) inyectados con diminacina, (b) inoculados con Leishmania chagasi, (c) inoculados con L. chagasi e inyectados con iminacina, y (d) controles. La inoculación se efectuó con un macerado de bazo extraído de un canino naturalmente infectado con L. chagasi. La diminacina fue administrada a razón de 3,5 mg/kg vía IM. Los frotis y cortes histopatológicos de los hámsteres infectados revelaron amastigotes de L. chagasi. Los ejemplares infectados y tratados con diminacina mantuvieron un mejor estado de salud que aquéllos privados de tratamiento, lo cual sugiere que la droga tendría un efecto benéfico en el organismo del animal infectado

    Short-term follow-up of chagasic patients after benznidazole treatment using multiple serological markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conventional serological tests, using total soluble proteins or a cocktail of recombinant proteins from <it>T. cruzi </it>as antigens, are highly sensitive for Chagas disease diagnosis. This type of tests, however, does not seem to be reliable tools for short- and medium-term monitoring of the evolution of patients after antiparasitic treatment. The aim of the present study was to search for immunological markers that could be altered in the sera from Chagas disease patients after benznidazole treatment, and therefore have a potential predictive diagnostic value.</p> <p>Methods</p> <p>We analyzed the reactivity of sera from chagasic patients during different clinical phases of the disease against a series of immunodominant antigens, known as KMP11, PFR2, HSP70 and Tgp63. The reactivity of the sera from 46 adult Chronic Chagas disease patients living in a non-endemic country without vector transmission of <it>T. cruzi </it>(15 patients in the indeterminate stage, 16 in the cardiomiopathy stage and 16 in the digestive stage) and 22 control sera from non-infected subjects was analyzed. We also analyzed the response dynamics of sera from those patients who had been treated with benznidazole.</p> <p>Results</p> <p>Regardless of the stage of the sickness, the sera from chagasic patients reacted against KMP11, HSP70, PFR2 and Tgp63 recombinant proteins with statistical significance relative to the reactivity against the same antigens by the sera from healthy donors, patients with autoimmune diseases or patients suffering from tuberculosis, leprosy or malaria. Shortly after benznidazole treatment, a statistically significant decrease in reactivity against KMP11, HSP70 and PFR2 was observed (six or nine month). It was also observed that, following benznidazole treatment, the differential reactivity against these antigens co-relates with the clinical status of the patients.</p> <p>Conclusions</p> <p>The recombinant antigens KMP11, PFR2, Tgp63 and HSP70 are recognized by Chagas disease patients' sera at any clinical stage of the disease. Shortly after benznidazole treatment, a drop in reactivity against three of these antigens is produced in an antigen-specific manner. Most likely, analysis of the reactivity against these recombinant antigens may be useful for monitoring the effectiveness of benznidazole treatment.</p

    High Throughput Selection of Effective Serodiagnostics for Trypanosoma cruzi infection

    Get PDF
    The diagnosis of Trypanosoma cruzi infection (the cause of human Chagas disease) is difficult because the symptoms of the infection are often absent or non-specific, and because the parasites themselves are usually below the level of detection in the infected subjects. Therefore, diagnosis generally depends on the measurement of T. cruzi–specific antibodies produced in response to the infection. However, current methods to detect anti–T. cruzi antibodies are relatively poor. In this study, we have conducted a broad screen of >400 T. cruzi proteins to identify those proteins which are best able to detect anti–T. cruzi antibodies. Using a set of proteins selected by this screen, we were able to detect 100% of >100 confirmed positive human cases of T. cruzi infection, as well as suspect cases that were negative using existing tests. This protein panel was also able to detect apparent changes in infection status following drug treatment of individuals with chronic T. cruzi infection. The results of this study should allow for significant improvements in the detection of T. cruzi infection and better screening methods to avoid blood transfusion–related transmission of the infection, and offer a crucial tool for determining the success or failure of drug treatment and other intervention strategies to limit the impact of Chagas disease

    Impact of Aetiological Treatment on Conventional and Multiplex Serology in Chronic Chagas Disease

    Get PDF
    The main criterion for treatment effectiveness in Chagas Disease has been the seronegative conversion of previously reactive serology, generally achieved many years post-treatment. The lack of reliable tests to ensure parasite clearance and to examine the effect of treatment is the main difficulty in evaluating treatment for chronic Chagas disease. Decreases of conventional and non-conventional serological titers can be useful tools to monitor the early impact of treatment. We serially measured changes in antibody levels, including seronegative conversion as well as declines in titers in 53 benznidazole-treated and 89 untreated chronically T. cruzi-infected subjects. Seronegative conversion as well as decreases of titers was significantly higher in treated compared with untreated patients. A strong concordance was found between decreases of titers of conventional and non-conventional serologic tests post-treatment, reaffirming the findings. When seronegative conversion plus decreases of titers were considered altogether, the impact of treatment was higher, in a shorter follow-up period than previously considered. New tools for monitoring the effectiveness of treatment of chronic Chagas disease are necessary, and the results showed in this study is a contribution to researchers and physicians who assist patients suffering from this disease

    Estimating Contact Process Saturation in Sylvatic Transmission of Trypanosoma cruzi in the United States

    Get PDF
    Although it has been known for nearly a century that strains of Trypanosoma cruzi, the etiological agent for Chagas' disease, are enzootic in the southern U.S., much remains unknown about the dynamics of its transmission in the sylvatic cycles that maintain it, including the relative importance of different transmission routes. Mathematical models can fill in gaps where field and lab data are difficult to collect, but they need as inputs the values of certain key demographic and epidemiological quantities which parametrize the models. In particular, they determine whether saturation occurs in the contact processes that communicate the infection between the two populations. Concentrating on raccoons, opossums, and woodrats as hosts in Texas and the southeastern U.S., and the vectors Triatoma sanguisuga and Triatoma gerstaeckeri, we use an exhaustive literature review to derive estimates for fundamental parameters, and use simple mathematical models to illustrate a method for estimating infection rates indirectly based on prevalence data. Results are used to draw conclusions about saturation and which population density drives each of the two contact-based infection processes (stercorarian/bloodborne and oral). Analysis suggests that the vector feeding process associated with stercorarian transmission to hosts and bloodborne transmission to vectors is limited by the population density of vectors when dealing with woodrats, but by that of hosts when dealing with raccoons and opossums, while the predation of hosts on vectors which drives oral transmission to hosts is limited by the population density of hosts. Confidence in these conclusions is limited by a severe paucity of data underlying associated parameter estimates, but the approaches developed here can also be applied to the study of other vector-borne infections

    High Prevalence of Congenital Trypanosoma cruzi Infection and Family Clustering in Salta, Argentina

    Full text link
    corecore