760 research outputs found

    Bell's Jump Process in Discrete Time

    Get PDF
    The jump process introduced by J. S. Bell in 1986, for defining a quantum field theory without observers, presupposes that space is discrete whereas time is continuous. In this letter, our interest is to find an analogous process in discrete time. We argue that a genuine analog does not exist, but provide examples of processes in discrete time that could be used as a replacement.Comment: 7 pages LaTeX, no figure

    TPQ3: EUROPEAN GUIDANCE DOCUMENT FOR THE IMPROVEMENT OF THE INTEGRATION OF HEALTH-RELATED QUALITY OF LIFE (HRQL) ASSESSMENT IN THE DRUG REGULATORY PROCESS

    Get PDF

    Quantum walk approach to search on fractal structures

    Full text link
    We study continuous-time quantum walks mimicking the quantum search based on Grover's procedure. This allows us to consider structures, that is, databases, with arbitrary topological arrangements of their entries. We show that the topological structure of the database plays a crucial role by analyzing, both analytically and numerically, the transition from the ground to the first excited state of the Hamiltonian associated with different (fractal) structures. Additionally, we use the probability of successfully finding a specific target as another indicator of the importance of the topological structure.Comment: 15 pages, 14 figure

    An Introduction to Quantum Programming in Quipper

    Full text link
    Quipper is a recently developed programming language for expressing quantum computations. This paper gives a brief tutorial introduction to the language, through a demonstration of how to make use of some of its key features. We illustrate many of Quipper's language features by developing a few well known examples of Quantum computation, including quantum teleportation, the quantum Fourier transform, and a quantum circuit for addition.Comment: 15 pages, RC201

    Random Oracles in a Quantum World

    Get PDF
    The interest in post-quantum cryptography - classical systems that remain secure in the presence of a quantum adversary - has generated elegant proposals for new cryptosystems. Some of these systems are set in the random oracle model and are proven secure relative to adversaries that have classical access to the random oracle. We argue that to prove post-quantum security one needs to prove security in the quantum-accessible random oracle model where the adversary can query the random oracle with quantum states. We begin by separating the classical and quantum-accessible random oracle models by presenting a scheme that is secure when the adversary is given classical access to the random oracle, but is insecure when the adversary can make quantum oracle queries. We then set out to develop generic conditions under which a classical random oracle proof implies security in the quantum-accessible random oracle model. We introduce the concept of a history-free reduction which is a category of classical random oracle reductions that basically determine oracle answers independently of the history of previous queries, and we prove that such reductions imply security in the quantum model. We then show that certain post-quantum proposals, including ones based on lattices, can be proven secure using history-free reductions and are therefore post-quantum secure. We conclude with a rich set of open problems in this area.Comment: 38 pages, v2: many substantial changes and extensions, merged with a related paper by Boneh and Zhandr
    corecore