24 research outputs found

    Influence of contacts on the microwave response of a two-dimensional electron stripe

    Full text link
    Electromagnetic response of a finite-width two-dimensional electron stripe with attached metallic side contacts is theoretically studied. It is shown that contacts substantially influence the position, the linewidth, and the amplitude of plasmon-polariton resonances in the stripe. In finite magnetic fields, absorption of the wave with the inactive circular polarization (which is not absorbed in an infinite system without contacts) may become larger than that of the wave with the active polarization. The results are discussed in view of recent microwave experiments in two-dimensional electron systems.Comment: 13 pages, incl. 9 figures, the paper has been substantially modified and extended, new results have been added. Accepted for publication in Phys. Rev.

    Superradiant Decay of Cyclotron Resonance of Two-Dimensional Electron Gases

    Get PDF
    We report on the observation of collective radiative decay, or superradiance, of cyclotron resonance (CR) in high-mobility two-dimensional electron gases in GaAs quantum wells using time-domain terahertz magnetospectroscopy. The decay rate of coherent CR oscillations increases linearly with the electron density in a wide range, which is a hallmark of superradiant damping. Our fully quantum mechanical theory provides a universal formula for the decay rate, which reproduces our experimental data without any adjustable parameter. These results firmly establish the many-body nature of CR decoherence in this system, despite the fact that the CR frequency is immune to electron-electron interactions due to Kohn's theorem.Comment: 5 pages, 4 figure

    A proteomic approach reveals integrin activation state-dependent control of microtubule cortical targeting

    Get PDF
    Integrin activation, which is regulated by allosteric changes in receptor conformation, enables cellular responses to the chemical, mechanical and topological features of the extracellular microenvironment. A global view of how activation state converts the molecular composition of the region proximal to integrins into functional readouts is, however, lacking. Here, using conformation-specific monoclonal antibodies, we report the isolation of integrin activation state-dependent complexes and their characterization by mass spectrometry. Quantitative comparisons, integrating network, clustering, pathway and image analyses, define multiple functional protein modules enriched in a conformation-specific manner. Notably, active integrin complexes are specifically enriched for proteins associated with microtubule-based functions. Visualization of microtubules on micropatterned surfaces and live cell imaging demonstrate that active integrins establish an environment that stabilizes microtubules at the cell periphery. These data provide a resource for the interrogation of the global molecular connections that link integrin activation to adhesion signalling
    corecore