61,860 research outputs found

    Comprehensive Spectral Analysis of Human EEG GENERATORS in Posterior Cerebral Regions

    Get PDF
    Human electroencephalogram generator spectral analysis in posterior cerebral region

    Quarkonia and Heavy-Quark Relaxation Times in the Quark-Gluon Plasma

    Get PDF
    A thermodynamic T-matrix approach for elastic 2-body interactions is employed to calculate spectral functions of open and hidden heavy-quark systems in the Quark-Gluon Plasma. This enables the evaluation of quarkonium bound-state properties and heavy-quark diffusion on a common basis and thus to obtain mutual constraints. The two-body interaction kernel is approximated within a potential picture for spacelike momentum transfers. An effective field-theoretical model combining color-Coulomb and confining terms is implemented with relativistic corrections and for different color channels. Four pertinent model parameters, characterizing the coupling strengths and screening, are adjusted to reproduce the color-average heavy-quark free energy as computed in thermal lattice QCD. The approach is tested against vacuum spectroscopy in the open (D, B) and hidden (Psi and Upsilon) flavor sectors, as well as in the high-energy limit of elastic perturbative QCD scattering. Theoretical uncertainties in the static reduction scheme of the 4-dimensional Bethe-Salpeter equation are elucidated. The quarkonium spectral functions are used to calculate Euclidean correlators which are discussed in light of lattice QCD results, while heavy-quark relaxation rates and diffusion coefficients are extracted utilizing a Fokker-Planck equation.Comment: 33 pages, 28 figure

    Transition from antibunching to bunching in cavity QED

    Full text link
    The photon statistics of the light emitted from an atomic ensemble into a single field mode of an optical cavity is investigated as a function of the number of atoms. The light is produced in a Raman transition driven by a pump laser and the cavity vacuum [M.Hennrich et al., Phys. Rev. Lett. 85, 4672 (2000)], and a recycling laser is employed to repeat this process continuously. For weak driving, a smooth transition from antibunching to bunching is found for about one intra-cavity atom. Remarkably, the bunching peak develops within the antibunching dip. For saturated driving and a growing number of atoms, the bunching amplitude decreases and the bunching duration increases, indicating the onset of Raman lasing.Comment: 4 pages, 4 figure

    Correlations in atomic systems: Diagnosing coherent superpositions

    Full text link
    While investigating quantum correlations in atomic systems, we note that single measurements contain information about these correlations. Using a simple model of measurement -- analogous to the one used in quantum optics -- we show how to extract higher order correlation functions from individual "phtotographs" of the atomic sample. As a possible application we apply the method to detect a subtle phase coherence in mesoscopic superpostitions.Comment: 4 pages, 2 figures, provisionally accepted to Physical Review Letter
    • …
    corecore