1,449 research outputs found

    Single-electron latch with granular film charge leakage suppressor

    Full text link
    A single-electron latch is a device that can be used as a building block for Quantum-dot Cellular Automata (QCA) circuits. It consists of three nanoscale metal "dots" connected in series by tunnel junctions; charging of the dots is controlled by three electrostatic gates. One very important feature of a single-electron latch is its ability to store ("latch") information represented by the location of a single electron within the three dots. To obtain latching, the undesired leakage of charge during the retention time must be suppressed. Previously, to achieve this goal, multiple tunnel junctions were used to connect the three dots. However, this method of charge leakage suppression requires an additional compensation of the background charges affecting each parasitic dot in the array of junctions. We report a single-electron latch where a granular metal film is used to fabricate the middle dot in the latch which concurrently acts as a charge leakage suppressor. This latch has no parasitic dots, therefore the background charge compensation procedure is greatly simplified. We discuss the origins of charge leakage suppression and possible applications of granular metal dots for various single-electron circuits.Comment: 21 pages, 4 figure

    Stability of Landau-Ginzburg branes

    Full text link
    We evaluate the ideas of Pi-stability at the Landau-Ginzburg point in moduli space of compact Calabi-Yau manifolds, using matrix factorizations to B-model the topological D-brane category. The standard requirement of unitarity at the IR fixed point is argued to lead to a notion of "R-stability" for matrix factorizations of quasi-homogeneous LG potentials. The D0-brane on the quintic at the Landau-Ginzburg point is not obviously unstable. Aiming to relate R-stability to a moduli space problem, we then study the action of the gauge group of similarity transformations on matrix factorizations. We define a naive moment map-like flow on the gauge orbits and use it to study boundary flows in several examples. Gauge transformations of non-zero degree play an interesting role for brane-antibrane annihilation. We also give a careful exposition of the grading of the Landau-Ginzburg category of B-branes, and prove an index theorem for matrix factorizations.Comment: 46 pages, LaTeX, summary adde

    Equivalences between GIT quotients of Landau-Ginzburg B-models

    Full text link
    We define the category of B-branes in a (not necessarily affine) Landau-Ginzburg B-model, incorporating the notion of R-charge. Our definition is a direct generalization of the category of perfect complexes. We then consider pairs of Landau-Ginzburg B-models that arise as different GIT quotients of a vector space by a one-dimensional torus, and show that for each such pair the two categories of B-branes are quasi-equivalent. In fact we produce a whole set of quasi-equivalences indexed by the integers, and show that the resulting auto-equivalences are all spherical twists.Comment: v3: Added two references. Final version, to appear in Comm. Math. Phy

    Defect detection in nano-scale transistors based on radio-frequency reflectometry

    Full text link
    Radio-frequency reflectometry in silicon single-electron transistors (SETs) is presented. At low temperatures (<4 K), in addition to the expected Coulomb blockade features associated with charging of the SET dot, quasi-periodic oscillations are observed that persist in the fully depleted regime where the SET dot is completely empty. A model, confirmed by simulations, indicates that these oscillations originate from charging of an unintended floating gate located in the heavily doped polycrystalline silicon gate stack. The technique used in this experiment can be applied for detailed spectroscopy of various charge defects in nanoscale SETs and field effect transistorsComment: 3 pages, 3 figure

    Quantum dynamics, dissipation, and asymmetry effects in quantum dot arrays

    Full text link
    We study the role of dissipation and structural defects on the time evolution of quantum dot arrays with mobile charges under external driving fields. These structures, proposed as quantum dot cellular automata, exhibit interesting quantum dynamics which we describe in terms of equations of motion for the density matrix. Using an open system approach, we study the role of asymmetries and the microscopic electron-phonon interaction on the general dynamical behavior of the charge distribution (polarization) of such systems. We find that the system response to the driving field is improved at low temperatures (and/or weak phonon coupling), before deteriorating as temperature and asymmetry increase. In addition to the study of the time evolution of polarization, we explore the linear entropy of the system in order to gain further insights into the competition between coherent evolution and dissipative processes.Comment: 11pages,9 figures(eps), submitted to PR

    Representations for Three-Body T-Matrix on Unphysical Sheets: Proofs

    Get PDF
    A proof is given for the explicit representations which have been formulated in the author's previous work (nucl-th/9505028) for the Faddeev components of three-body T-matrix continued analytically on unphysical sheets of the energy Riemann surface. Also, the analogous representations for analytical continuation of the three-body scattering matrices and resolvent are proved. An algorithm to search for the three-body resonances on the base of the Faddeev differential equations is discussed.Comment: 98 Kb; LaTeX; Journal-ref was added (the title changed in the journal

    Representations for Three-Body T-Matrix on Unphysical Sheets

    Get PDF
    Explicit representations are formulated for the Faddeev components of three-body T-matrix continued analytically on unphysical sheets of the energy Riemann surface. According to the representations, the T-matrix on unphysical sheets is obviously expressed in terms of its components taken on the physical sheet only. The representations for T-matrix are used then to construct similar representations for analytical continuation of three-body scattering matrices and resolvent. Domains on unphysical sheets are described where the representations obtained can be applied.Comment: 123 Kb; LaTeX; Journal-ref was added (the title changed in the journal

    Concentration and power dependences of level population of 2.8-mu m laser transition in YLF : Er crystals under CW laser diode pumping

    Get PDF
    An influence of interionic cross relaxation processes (upconversion, selfquenching) on concentration and power dependences of the inverse population of ^4I_(11/2) and ^4I_(13/2) laser levels in YLF:Er crystals under CW laser-diode pumping were studied both theoretically and experimentally. Computer simulations were carried out taking into account not only pair interaction but also the multi-ion interaction in the whole system. Optimal Er concentration for 3 - µm CW lasing was estimated as 10 - 15%

    Cellular Structures for Computation in the Quantum Regime

    Full text link
    We present a new cellular data processing scheme, a hybrid of existing cellular automata (CA) and gate array architectures, which is optimized for realization at the quantum scale. For conventional computing, the CA-like external clocking avoids the time-scale problems associated with ground-state relaxation schemes. For quantum computing, the architecture constitutes a novel paradigm whereby the algorithm is embedded in spatial, as opposed to temporal, structure. The architecture can be exploited to produce highly efficient algorithms: for example, a list of length N can be searched in time of order cube root N.Comment: 11 pages (LaTeX), 3 figure
    corecore