4,407 research outputs found

    Optical and dc transport properties of a strongly correlated charge density wave system: exact solution in the ordered phase of the spinless Falicov-Kimball model with dynamical mean-field theory

    Full text link
    We derive the dynamical mean-field theory equations for transport in an ordered charge-density-wave phase on a bipartite lattice. The formalism is applied to the spinless Falicov-Kimball model on a hypercubic lattice at half filling. We determine the many-body density of states, the dc charge and heat conductivities, and the optical conductivity. Vertex corrections continue to vanish within the ordered phase, but the density of states and the transport coefficients show anomalous behavior due to the rapid development of thermally activated subgap states. We also examine the optical sum rule and sum rules for the first three moments of the Green's functions within the ordered phase and see that the total optical spectral weight in the ordered phase either decreases or increases depending on the strength of the interactions.Comment: 14 pages, 14 figures, submitted to Phys. Rev.

    Continuum limit of the Volterra model, separation of variables and non standard realizations of the Virasoro Poisson bracket

    Full text link
    The classical Volterra model, equipped with the Faddeev-Takhtadjan Poisson bracket provides a lattice version of the Virasoro algebra. The Volterra model being integrable, we can express the dynamical variables in terms of the so called separated variables. Taking the continuum limit of these formulae, we obtain the Virasoro generators written as determinants of infinite matrices, the elements of which are constructed with a set of points lying on an infinite genus Riemann surface. The coordinates of these points are separated variables for an infinite set of Poisson commuting quantities including L_0L\_0. The scaling limit of the eigenvector can also be calculated explicitly, so that the associated Schroedinger equation is in fact exactly solvable.Comment: Latex, 43 pages Synchronized with the to be published versio

    Nonresonant Raman and inelastic X-ray scattering in the charge-density-wave phase of the spinless Falicov-Kimball model

    Full text link
    Nonresonant inelastic light and X-ray scattering is investigated for the spinless Falicov-Kimball model on an infinite-dimensional hypercubic lattice with a charge-density-wave phase at half filling. The many-body density of states (DOS) is found for different values of the Coulomb repulsion UU, ranging from a dirty metal to a Mott insulator. At zero temperature, the charge gap is exactly equal to UU; increasing the temperature rapidly fills the gap with subgap states. The nonresonant response function for Raman and inelastic X-ray scattering shows peaks connected with transitions over the gap and transitions that involve subgap states. In the case of X-ray scattering (when both energy and momentum are transferred), the response function illustrates features of dynamical screening (vertex corrections) in the different (nonresonant) symmetry channels (A1gA_{\rm 1g} and B1gB_{\rm 1g}). We also derive and verify the first moment sum rules for the (nonresonant) Raman and inelastic X-ray response functions.Comment: 19 pages, 17 figure

    Exotic resonant level models in non-Abelian quantum Hall states coupled to quantum dots

    Get PDF
    In this paper we study the coupling between a quantum dot and the edge of a non-Abelian fractional quantum Hall state. We assume the dot is small enough that its level spacing is large compared to both the temperature and the coupling to the spatially proximate bulk non-Abelian fractional quantum Hall state. We focus on the physics of level degeneracy with electron number on the dot. The physics of such a resonant level is governed by a kk-channel Kondo model when the quantum Hall state is a Read-Rezayi state at filling fraction ν=2+k/(k+2)\nu=2+k/(k+2) or its particle-hole conjugate at ν=2+2/(k+2)\nu=2+2/(k+2). The kk-channel Kondo model is channel symmetric even without fine tuning any couplings in the former state; in the latter, it is generically channel asymmetric. The two limits exhibit non-Fermi liquid and Fermi liquid properties, respectively, and therefore may be distinguished. By exploiting the mapping between the resonant level model and the multichannel Kondo model, we discuss the thermodynamic and transport properties of the system. In the special case of k=2k=2, our results provide a novel venue to distinguish between the Pfaffian and anti-Pfaffian states at filling fraction ν=5/2\nu=5/2. We present numerical estimates for realizing this scenario in experiment.Comment: 18 pages, 2 figures. Clarified final discussio

    Quantum phase transition of Ising-coupled Kondo impurities

    Full text link
    We investigate a model of two Kondo impurities coupled via an Ising interaction. Exploiting the mapping to a generalized single-impurity Anderson model, we establish that the model has a singlet and a (pseudospin) doublet phase separated by a Kosterlitz-Thouless quantum phase transition. Based on a strong-coupling analysis and renormalization group arguments, we show that at this transition the conductance G through the system either displays a zero-bias anomaly, G ~ |V|^{-2(\sqrt{2}-1)}, or takes a universal value, G = e^2/(\pi\hbar) cos^2[\pi/(2\sqrt{2})], depending on the experimental setup. Close to the Toulouse point of the individual Kondo impurities, the strong-coupling analysis allows to obtain the location of the phase boundary analytically. For general model parameters, we determine the phase diagram and investigate the thermodynamics using numerical renormalization group calculations. In the singlet phase close to the quantum phase transtion, the entropy is quenched in two steps: first the two Ising-coupled spins form a magnetic mini-domain which is, in a second step, screened by a Kondoesque collective resonance in an effective solitonic Fermi sea. In addition, we present a flow equation analysis which provides a different mapping of the two-impurity model to a generalized single-impurity Anderson model in terms of fully renormalized couplings, which is applicable for the whole range of model parameters.Comment: 24 pages, 12 figs; (v2) minor changes, flow equation section extende

    Coulomb Blockade Peak Spacings: Interplay of Spin and Dot-Lead Coupling

    Full text link
    For Coulomb blockade peaks in the linear conductance of a quantum dot, we study the correction to the spacing between the peaks due to dot-lead coupling. This coupling can affect measurements in which Coulomb blockade phenomena are used as a tool to probe the energy level structure of quantum dots. The electron-electron interactions in the quantum dot are described by the constant exchange and interaction (CEI) model while the single-particle properties are described by random matrix theory. We find analytic expressions for both the average and rms mesoscopic fluctuation of the correction. For a realistic value of the exchange interaction constant J_s, the ensemble average correction to the peak spacing is two to three times smaller than that at J_s = 0. As a function of J_s, the average correction to the peak spacing for an even valley decreases monotonically, nonetheless staying positive. The rms fluctuation is of the same order as the average and weakly depends on J_s. For a small fraction of quantum dots in the ensemble, therefore, the correction to the peak spacing for the even valley is negative. The correction to the spacing in the odd valleys is opposite in sign to that in the even valleys and equal in magnitude. These results are robust with respect to the choice of the random matrix ensemble or change in parameters such as charging energy, mean level spacing, or temperature.Comment: RevTex, 11 pages, 9 figures. v2: Conclusions section expanded. Accepted for publication in PR

    Reduction Operators of Linear Second-Order Parabolic Equations

    Full text link
    The reduction operators, i.e., the operators of nonclassical (conditional) symmetry, of (1+1)-dimensional second order linear parabolic partial differential equations and all the possible reductions of these equations to ordinary differential ones are exhaustively described. This problem proves to be equivalent, in some sense, to solving the initial equations. The ``no-go'' result is extended to the investigation of point transformations (admissible transformations, equivalence transformations, Lie symmetries) and Lie reductions of the determining equations for the nonclassical symmetries. Transformations linearizing the determining equations are obtained in the general case and under different additional constraints. A nontrivial example illustrating applications of reduction operators to finding exact solutions of equations from the class under consideration is presented. An observed connection between reduction operators and Darboux transformations is discussed.Comment: 31 pages, minor misprints are correcte
    corecore