538 research outputs found

    Modulation of cosmic ray anti-protons in the heliosphere: simulations for a solar cycle

    Full text link
    The precision measurements of galactic cosmic ray protons from PAMELA and AMS are reproduced using a well-established 3D numerical model for the period July 2006 - November 2019. The resulting modulation parameters are applied to simulate the modulation for cosmic antiprotons over the same period, which includes times of minimum modulation before and after 2009, maximum modulation from 2012 to 2015 including the reversal of the Sun's magnetic field polarity, and the approach to new minimum modulation in 2020. Apart from their local interstellar spectra, the modulation of protons and antiprotons differ only in their charge-sign and consequent drift pattern. The lowest proton flux was in February-March 2014, but the lowest simulated antiproton flux is found to be in March-April 2015. These simulated fluxes are used to predict the proton to anti-proton ratios as a function of rigidity. The trends in these ratios contribute to clarify to a large extent the phenomenon of charge-sign dependence of heliospheric modulation during vastly different phases of the solar activity cycle. This is reiterated and emphasized by displaying so-called hysteresis loops. It is also illustrated how the values of the parallel and perpendicular mean free paths, as well as the drift scale, vary with rigidity over this extensive period. The drift scale is found to be at its lowest level during the polarity reversal period, while the lowest level of the mean free paths are found to be in March-April 2015.Comment: 17 Pages, 7 Figures, Submitted to Astrophysical Journa

    Unfolding Drift Effects for Cosmic Rays over the Period of the Sun's Magnetic Field Reversal

    Full text link
    A well-established, comprehensive 3-D numerical modulation model is applied to simulate galactic protons, electrons and positrons from May 2011 to May 2015, including the solar magnetic polarity reversal of Solar Cycle 24. The objective is to evaluate how these simulations compare with corresponding AMS observations for 1.0-3.0 GV, and what underlying physics follows from this comparison in order to improve our understanding on how the major physical modulation processes change, especially particle drift, from a negative to a positive magnetic polarity cycle. Apart from their local interstellar spectra, electrons and positrons differ only in their drift patterns, but they differ with protons in other ways such as their adiabatic energy changes at lower rigidity. In order to complete the simulations for oppositely charged particles, antiproton modeling results are obtained as well. Together, the observations and the corresponding modeling indicate the difference in the drift pattern before and after the recent polarity reversal and clarify to a large extent the phenomenon of charge-sign dependence during this period. The effect of global particle drift became negligible during this period of no well-defined magnetic polarity. The resulting low values of all particles' MFPs during the polarity reversal contrast their large values during solar minimum activity, and as such expose the relative contributions and effects of the different modulation processes from solar minimum to maximum activity. We find that the drift scale starts recovering just after the polarity reversal, but the MFPs keep decreasing or remain unchanged for some period after the polarity reversal.Comment: Submitted to Astrophysical Journal, 27 pages, 13 Figure
    • …
    corecore