15 research outputs found

    Experimentally Studied Thermal Piston-head State of the Internal-Combustion Engine with a Thermal Layer Formed by Micro-Arc Oxidation Method

    No full text
    The paper presents results of experimental study to show the efficiency of reducing thermal tension of internal combustion engine (ICE) pistons through forming a thermal barrier coating on the piston-head. During the engine operation the piston is under the most thermal stress. High temperatures in the combustion chamber may lead to the piston-head burnout and destruction and engine failure.Micro-arc oxidation (MAO) method was selected as the technology to create a thermal barrier coating. MAO technology allows us to form the ceramic coating with a thickness of 400μm on the surface of aluminum alloy, which have high heat resistance, and have good adhesion to the substrate even under thermal cycling stresses.Deliverables of MAO method used to protect pistons described in the scientific literature are insufficient, as they are either calculated or experimentally obtained at the special plants (units), which do not reproduce piston operation in a real engine. This work aims to fill this gap. The aim of the work is an experimental study of the thermal protective ability of MAO-layer formed on the piston-head with simulation of thermal processes of the real engine.The tests were performed on a specially designed and manufactured stand free of motor, which reproduces operation conditions maximum close to those of the real engine. The piston is heated by a fire source - gas burner with isobutene balloon, cooling is carried out by the water circulation system through the water-cooling jacket.Tests have been conducted to compare the thermal state of the regular engine piston without thermal protection and the piston with a heat layer formed on the piston-head by MAO method. The study findings show that the thermal protective MAO-layer with thickness of 100μm allows us to reduce thermal tension of piston on average by 8,5 %. Thus at high temperatures there is the most pronounced effect that is important for the uprated engines.The obtained findings can be used when designing and manufacturing the ICE with aluminum-alloy pistons.</p

    Concentration of work in open-cut mining of minerals

    No full text

    Differential geometry of manifolds of figures

    No full text

    The theory of inverse boundary problems for analytic functions and its applications

    No full text
    corecore