132 research outputs found

    Abelian-Higgs and Vortices from ABJM: towards a string realization of AdS/CMT

    Full text link
    We present ans\"{a}tze that reduce the mass-deformed ABJM model to gauged Abelian scalar theories, using the fuzzy sphere matrices GαG^\alpha. One such reduction gives a Toda system, for which we find a new type of nonabelian vortex. Another gives the standard Abelian-Higgs model, thereby allowing us to embed all the usual (multi-)vortex solutions of the latter into the ABJM model. By turning off the mass deformation at the level of the reduced model, we can also continuously deform to the massive ϕ4\phi^4 theory in the massless ABJM case. In this way we can embed the Landau-Ginzburg model into the AdS/CFT correspondence as a consistent truncation of ABJM. In this context, the mass deformation parameter μ\mu and a field VEV act as gg and gcg_c respectively, leading to a well-motivated AdS/CMT construction from string theory. To further this particular point, we propose a simple model for the condensed matter field theory that leads to an approximate description for the ABJM abelianization. Finally, we also find some BPS solutions to the mass-deformed ABJM model with a spacetime interpretation as an M2-brane ending on a spherical M5-brane.Comment: 43 pages, latex, explanations added in the introduction, end of section 4, and on page 2

    Diffractive Vector Meson Photoproduction from Dual String Theory

    Full text link
    We study diffractive vector meson photoproduction using string theory via AdS/CFT. The large ss behavior of the cross sections for the scattering of the vector meson VV on a proton is dominated by the soft Pomeron, σVs2ϵ2αP/B\sigma_V\sim s^{2\epsilon-2\alpha'_P/B}, where from the string theory model of \cite{nastase2}, ϵ\epsilon is approximately 1/7 below 10 GeV, and 1/11 for higher, but still sub-Froissart, energies. This is due to the production of black holes in the dual gravity. In ϕ\phi-photoproduction the mesonic Regge poles do not contribute, so that we deal with a pure Pomeron contribution. This allows for an experimental test. At the gauge theory "Planck scale" of about 1-2 GeV, the ratios of the soft Pomeron contributions to the photoproduction cross-sections of different vector mesons involve not only the obvious quark model factors, but also the Boltzmann factors e4MV/T0e^{-4 M_V/T_0}, with T0T_0 the temperature of the dual black hole. The presence of these factors is confirmed in the experimental data for ρ,ω,ϕ,J/ψ,\rho, \omega, \phi, J/\psi, and ψ(2S)\psi(2S) photoproduction and is compatible with the meager Υ\Upsilon photoproduction data. Throughout, we use vector meson dominance, and from the data we obtain T0T_0 of about 1.3GeV1.3 GeV, i.e. the gauge theory "Planck scale," as expected. The ratio of the experimental soft Pomeron onset scale E^R9\hat{E}_R\sim 9 GeV and of the gauge theory Planck scale, T01.3T_0 \sim 1.3 GeV conforms to the theoretical prediction of Nc2/Nc1/4N_c^2/N_c^{1/4}.Comment: 17 pages, 1 figure, late

    The Plasma Puddle as a Perturbative Black Hole

    Full text link
    We argue that the weak coupling regime of a large N gauge theory in the Higgs phase contains black hole-like objects. These so-called ``plasma puddles'' are meta-stable lumps of hot plasma lying in locally un-Higgsed regions of space. They decay via O(1/N) thermal radiation and, perhaps surprisingly, absorb all incident matter. We show that an incident particle of energy E striking the plasma puddle will shower into an enormous number of decay products whose multiplicity grows linearly with E, and whose average energy is independent of E. Once these ultra-soft particles reach the interior they are thermalized by the plasma within, and so the object appears ``black.'' We determine some gross properties like the size and temperature of the the plasma puddle in terms of fundamental parameters in the gauge theory. Interestingly, demanding that the plasma puddle emit thermal Hawking radiation implies that the object is black (i.e. absorbs all incident particles), which implies classical stability, which implies satisfaction of the Bekenstein entropy bound. Because of the AdS/CFT duality and the many similarities between plasma puddles and black holes, we conjecture that black objects are a robust feature of quantum gravity.Comment: 23 pages, 3 figures, V2: minor changes, ref added, appendix A.5 moved to body of pape

    Dynamics of First Order Transitions with Gravity Duals

    Full text link
    A first order phase transition usually proceeds by nucleating bubbles of the new phase which then rapidly expand. In confining gauge theories with a gravity dual, the deconfined phase is often described by a black hole. If one starts in this phase and lowers the temperature, the usual description of how the phase transition proceeds violates the area theorem. We study the dynamics of this phase transition using the insights from the dual gravitational description, and resolve this apparent contradiction.Comment: 11 pages, 1 figure. v2: minor clarifications, reference adde

    Neural Responses to Naturalistic Clips of Behaving Animals Under Two Different Task Contexts

    Get PDF
    The human brain rapidly deploys semantic information during perception to facilitate our interaction with the world. These semantic representations are encoded in the activity of distributed populations of neurons (Haxby et al., 2001; McClelland and Rogers, 2003; Kriegeskorte et al., 2008b) and command widespread cortical real estate (Binder et al., 2009; Huth et al., 2012). The neural representation of a stimulus can be described as a location (i.e., response vector) in a high-dimensional neural representational space (Kriegeskorte and Kievit, 2013; Haxby et al., 2014). This resonates with behavioral and theoretical work describing mental representations of objects and actions as being organized in a multidimensional psychological space (Attneave, 1950; Shepard, 1958, 1987; Edelman, 1998; Gärdenfors and Warglien, 2012). Current applications of this framework to neural representation (e.g., Kriegeskorte et al., 2008b) often implicitly assume that these neural representational spaces are relatively fixed and context-invariant. In contrast, earlier work emphasized the importance of attention and task demands in actively reshaping representational space (Shepard, 1964; Tversky, 1977; Nosofsky, 1986; Kruschke, 1992). A growing body of work in both electrophysiology (e.g., Sigala and Logothetis, 2002; Sigala, 2004; Cohen and Maunsell, 2009; Reynolds and Heeger, 2009) and human neuroimaging (e.g., Hon et al., 2009; Jehee et al., 2011; Brouwer and Heeger, 2013; Çukur et al., 2013; Sprague and Serences, 2013; Harel et al., 2014; Erez and Duncan, 2015; Nastase et al., 2017) has suggested mechanisms by which behavioral goals dynamically alter neural representation

    Sakai-Sugimoto model, Tachyon Condensation and Chiral symmetry Breaking

    Full text link
    We modify the Sakai-Sugimoto model of chiral symmetry breaking to take into account the open string tachyon which stretches between the flavour D8-branes and anti D8-branes. There are several reasons of consistency for doing this: (i) Even if it might be reasonable to ignore the tachyon in the ultraviolet where the flavour branes and antibranes are well separated and the tachyon is small, it is likely to condense and acquire large values in the infrared where the branes meet. This takes the system far away from the perturbatively stable minimum of the Sakai-Sugimoto model; (ii) The bifundamental coupling of the tachyon to fermions of opposite chirality makes it a suitable candidate for the quark mass and chiral condensate parameters. We show that the modified Sakai-Sugimoto model with the tachyon present has a classical solution satisfying all the desired consistency properties. In this solution chiral symmetry breaking coincides with tachyon condensation. We identify the parameters corresponding to the quark mass and the chiral condensate and also briefly discuss the mesonic spectra.Comment: 18 pages, latex; v3; conclusion in subsection 3.1 modified and appropriate changes made in the abstract and introduction to reflect this; typos corrected; version to appear in JHE

    On Non-linear Action for Gauged M2-brane

    Full text link
    We propose a non-linear extension of U(1) \times U(1) (abelian) ABJM model including T_{M2} (higher derivative) corrections. The action proposed here is expected to describe a single M2-brane proving C^4/Z_k target space. The model includes couplings with the 3-form background in the eleven-dimensional supergravity which is consistent with the orbifold projection. We show that the novel higgs mechanism proposed by Mukhi and Papageorgakis does work even in the presence of higher derivative corrections and couplings with the background field, giving the correct structure of the Dirac-Born-Infeld action with Wess-Zumino term for a D2-brane. We also find half BPS solutions in the full non-linear theory which is interpreted as an another M2-brane intersecting with the original M2-brane. A possible generalization to U(N) \times U(N) gauge group is briefly discussed.Comment: 19 pages, no figure, references added, typos correcte

    Thermodynamics of AdS/QCD

    Get PDF
    We study finite temperature properties of four dimensional QCD-like gauge theories in the gauge theory/gravity duality picture. The gravity dual contains two deformed 5d AdS metrics, with and without a black hole, and a dilaton. We study the thermodynamics of the 4d boundary theory and constrain the two metrics so that they correspond to a high and a low temperature phase separated by a first order phase transition. The equation of state has the standard form for the pressure of a strongly coupled fluid modified by a vacuum energy, a bag constant. We determine the parameters of the deformation by using QCD results for TcT_c and the hadron spectrum. With these parameters, we show that the phase transition in the 4d boundary theory and the 5d bulk Hawking-Page transition agree. We probe the dynamics of the two phases by computing the quark-antiquark free energy in them and confirm that the transition corresponds to confinement-deconfinement transition.Comment: 1+19 pages, 6 figures, references added, section 3 improve

    Strings in flat space and pp waves from N=4{\cal N}=4 Super Yang Mills

    Full text link
    We explain how the string spectrum in flat space and pp-waves arises from the large NN limit, at fixed gYM2g^2_{YM}, of U(N) N=4{\cal N} =4 super Yang Mills. We reproduce the spectrum by summing a subset of the planar Feynman diagrams. We give a heuristic argument for why we can neglect other diagrams. We also discuss some other aspects of pp-waves and we present a matrix model associated to the DLCQ description of the maximally supersymmetric eleven dimensional pp-waves.Comment: 36 pages, 5 figures. v3: minor typos corrected, references adde
    corecore